找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Infinite Dimensional Analysis; A Hitchhiker’s Guide Charalambos D. Aliprantis,Kim C. Border Book 19992nd edition Springer-Verlag Berlin Hei

[復(fù)制鏈接]
樓主: 回憶錄
31#
發(fā)表于 2025-3-26 23:22:48 | 只看該作者
32#
發(fā)表于 2025-3-27 04:26:49 | 只看該作者
Springer-Verlag Berlin Heidelberg 1999
33#
發(fā)表于 2025-3-27 06:01:09 | 只看該作者
34#
發(fā)表于 2025-3-27 13:25:01 | 只看該作者
-spaces,In this chapter, we introduce the classical ..-spaces and study their basic properties. For a measure space (., Σ, .) and 0 < . <∞, the space ..(.) is the collection of all equivalence classes of measurable functions . for which the .-norm
35#
發(fā)表于 2025-3-27 17:41:41 | 只看該作者
36#
發(fā)表于 2025-3-27 21:47:28 | 只看該作者
37#
發(fā)表于 2025-3-28 01:29:28 | 只看該作者
Topology, are familiar with the notion of convergence of a sequence of real numbers, and you may even be familiar with convergence in more general normed or metric spaces. Recall that a sequence {x.} of real numbers converges to a real number . if {|x. — x|} converges to zero. That is, for every . > 0, there
38#
發(fā)表于 2025-3-28 03:20:31 | 只看該作者
Metrizable spaces,ther work with a metric space if they could. The reason is that the metric, a real-valued function, allows us to analyze these spaces using what we know about the real numbers. That is why they are so important in real analysis. We present here some of the more arcane results of the theory of metric
39#
發(fā)表于 2025-3-28 06:38:05 | 只看該作者
Measurability,babilities to various .. Given events . and . it is natural to consider the events “. and .,” “. or .,” and the event “not ..” If we model events as sets of ., then the family of events should be closed under intersections, unions, and complements. It should also include the set of all states of the
40#
發(fā)表于 2025-3-28 11:25:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沾化县| 乐陵市| 萨迦县| 长治市| 绥芬河市| 定远县| 三江| 昌江| 大宁县| 瑞丽市| 枞阳县| 屏东市| 屯昌县| 定襄县| 贡嘎县| 塔河县| 德惠市| 宜黄县| 叙永县| 安新县| 峨眉山市| 庆元县| 盖州市| 丹寨县| 临桂县| 哈尔滨市| 晋中市| 乐平市| 册亨县| 手游| 大宁县| 蓝田县| 罗源县| 景东| 大安市| 商丘市| 始兴县| 通江县| 聂拉木县| 大洼县| 个旧市|