找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Inequalities; Theorems, Techniques Zdravko Cvetkovski Book 2012 Springer-Verlag Berlin Heidelberg 2012 Cauchy-Schwarz inequality.H?lder’s i

[復(fù)制鏈接]
樓主: Indigent
11#
發(fā)表于 2025-3-23 11:44:19 | 只看該作者
,Generalizations of the Cauchy–Schwarz Inequality, Chebishev’s Inequality and the Mean Inequalities,In Chap.?. we presented the ., . and the .. In this section we will give their generalizations. The proof of first theorem is left to the reader, since it is similar to the proof of ..
12#
發(fā)表于 2025-3-23 16:16:14 | 只看該作者
,Newton’s Inequality, Maclaurin’s Inequality,Let ..,..,…,.. be arbitrary real numbers..Consider the polynomial . Then the coefficients ..,..,…,.. can be expressed as functions of ..,..,…,.., i.e. we have . For each .=1,2,…,. we define ..
13#
發(fā)表于 2025-3-23 18:49:01 | 只看該作者
14#
發(fā)表于 2025-3-23 23:37:42 | 只看該作者
Two Theorems from Differential Calculus, and Their Applications for Proving Inequalities,In this section we’ll give two theorems (without proof), whose origins are part of differential calculus, and which are widely used in proving certain inequalities. We assume that the reader has basic knowledge of differential calculus.
15#
發(fā)表于 2025-3-24 03:24:43 | 只看該作者
16#
發(fā)表于 2025-3-24 07:30:59 | 只看該作者
Sum of Squares (SOS Method),One of the basic procedures for proving inequalities is to rewrite them as a sum of squares (.) and then, according to the most elementary property that the square of a real number is non-negative, to prove a certain inequality. This property is the basis of the SOS method.
17#
發(fā)表于 2025-3-24 12:23:04 | 只看該作者
18#
發(fā)表于 2025-3-24 16:49:31 | 只看該作者
,Bernoulli’s Inequality, the Cauchy–Schwarz Inequality, Chebishev’s Inequality, Surányi’s Inequalityl inequalities containing more variables, and inequalities which are difficult to prove with already adopted elementary inequalities. These inequalities are often used for proving different inequalities for mathematical competitions.
19#
發(fā)表于 2025-3-24 20:39:40 | 只看該作者
20#
發(fā)表于 2025-3-25 00:26:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 17:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台北县| 陆川县| 禹城市| 麻江县| 宁强县| 从江县| 临江市| 万年县| 平远县| 福贡县| 蓬莱市| 辛集市| 微山县| 中江县| 香港| 习水县| 梨树县| 河西区| 瑞金市| 定结县| 腾冲县| 朝阳区| 江西省| 嘉黎县| 博乐市| 东港市| 东乌珠穆沁旗| 普兰店市| 绥化市| 福建省| 忻城县| 岳阳县| 湖北省| 新密市| 东阿县| 肇源县| 秦安县| 鹤庆县| 通山县| 建宁县| 阿拉善右旗|