找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Inductive Logic Programming; 16th International C Stephen Muggleton,Ramon Otero,Alireza Tamaddoni-Ne Conference proceedings 2007 Springer-V

[復(fù)制鏈接]
查看: 49705|回復(fù): 62
樓主
發(fā)表于 2025-3-21 16:10:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Inductive Logic Programming
副標(biāo)題16th International C
編輯Stephen Muggleton,Ramon Otero,Alireza Tamaddoni-Ne
視頻videohttp://file.papertrans.cn/464/463904/463904.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Inductive Logic Programming; 16th International C Stephen Muggleton,Ramon Otero,Alireza Tamaddoni-Ne Conference proceedings 2007 Springer-V
描述The inherent dangers of change are often summed up in the misquoted Chinese curse “May you live in interesting times.” The submission procedure for the 16th International Conference of Inductive Logic Programming (ILP 2006) was a radical (hopefully interesting but not cursed) departure from previous years. Submissions were requested in two phases. The ?rst phase involved submission of short papers (three pages) which were then presented at the conference and included in a short papers proceedings. In the second phase, reviewers selected papersforlongpapersubmission(15pagesmaximum).Thesewerethenassessed by the same reviewers, who then decided which papers to include in the journal special issue and proceedings. In the ?rst phase there were a record 77 papers, comparedto the usual20 orso long papersofpreviousyears.Eachpaper was- viewed by three reviewers. Out of these, 71 contributors were invited to submit long papers. Out of the long paper submissions, 7 were selected for the - chine Learning Journal special issue and 27 were accepted for the proceedings. In addition, two papers were nominated by Program Committee referees for the applications prize and two for the theory prize. Th
出版日期Conference proceedings 2007
關(guān)鍵詞Bayesian networks; algorithm; algorithmic learning; algorithms; bioinformatics; classifier systems; comple
版次1
doihttps://doi.org/10.1007/978-3-540-73847-3
isbn_softcover978-3-540-73846-6
isbn_ebook978-3-540-73847-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2007
The information of publication is updating

書目名稱Inductive Logic Programming影響因子(影響力)




書目名稱Inductive Logic Programming影響因子(影響力)學(xué)科排名




書目名稱Inductive Logic Programming網(wǎng)絡(luò)公開度




書目名稱Inductive Logic Programming網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Inductive Logic Programming被引頻次




書目名稱Inductive Logic Programming被引頻次學(xué)科排名




書目名稱Inductive Logic Programming年度引用




書目名稱Inductive Logic Programming年度引用學(xué)科排名




書目名稱Inductive Logic Programming讀者反饋




書目名稱Inductive Logic Programming讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:28:32 | 只看該作者
ALLPAD: Approximate Learning of Logic Programs with Annotated Disjunctionsin order to tackle real world learning problems more effectively. This is achieved by looking for an approximate solution rather than a perfect one. ALLPAD has been tested on the problem of classifying proteins according to their tertiary structure and the results compare favorably with most other approaches.
板凳
發(fā)表于 2025-3-22 02:10:32 | 只看該作者
Revising Probabilistic Prolog ProgramsThe ProbLog (probabilistic prolog) language has been introduced in [1], where various algorithms have been developed for solving and approximating ProbLog queries. Here, we define and study the problem of revising ProbLog theories from examples.
地板
發(fā)表于 2025-3-22 05:35:01 | 只看該作者
5#
發(fā)表于 2025-3-22 09:09:28 | 只看該作者
978-3-540-73846-6Springer-Verlag Berlin Heidelberg 2007
6#
發(fā)表于 2025-3-22 12:53:13 | 只看該作者
7#
發(fā)表于 2025-3-22 18:16:08 | 只看該作者
8#
發(fā)表于 2025-3-22 23:04:55 | 只看該作者
9#
發(fā)表于 2025-3-23 03:05:48 | 只看該作者
Margin-Based First-Order Rule Learninge-art rule learning approaches [1], we therefore assign weights to the rules. In this way, a rule set represents a linear classifier and one can optimize . optimization criteria, essentially reducing the misclassification error on noisy data. Since we aim at comprehensible models, we employ margins
10#
發(fā)表于 2025-3-23 08:29:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高陵县| 贡觉县| 鄯善县| 盘锦市| 舒城县| 庄河市| 黄浦区| 马山县| 凉山| 石林| 萍乡市| 茂名市| 高台县| 斗六市| 日土县| 三穗县| 怀来县| 老河口市| 迭部县| 闽清县| 青海省| 崇明县| 温宿县| 晋江市| 丘北县| 福海县| 镇宁| 色达县| 宣威市| 阿尔山市| 资中县| 双城市| 老河口市| 大方县| 启东市| 朔州市| 都江堰市| 会理县| 延长县| 竹溪县| 南平市|