找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Inductive Logic Programming; 18th International C Filip ?elezny,Nada Lavra? Conference proceedings 2008 Springer-Verlag Berlin Heidelberg 2

[復(fù)制鏈接]
查看: 26749|回復(fù): 60
樓主
發(fā)表于 2025-3-21 16:10:20 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Inductive Logic Programming
副標(biāo)題18th International C
編輯Filip ?elezny,Nada Lavra?
視頻videohttp://file.papertrans.cn/464/463903/463903.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Inductive Logic Programming; 18th International C Filip ?elezny,Nada Lavra? Conference proceedings 2008 Springer-Verlag Berlin Heidelberg 2
描述The 18th International Conference on Inductive Logic Programming was held in Prague, September 10–12, 2008. ILP returned to Prague after 11 years, and it is tempting to look at how the topics of interest have evolved during that time. The ILP community clearly continues to cherish its beloved ?rst-order logic representation framework. This is legitimate, as the work presented at ILP 2008 demonstrated that there is still room for both extending established ILP approaches (such as inverse entailment) and exploring novel logic induction frameworks (such as brave induction). Besides the topics lending ILP research its unique focus, we were glad to see in this year’s proceedings a good n- ber of papers contributing to areas such as statistical relational learning, graph mining, or the semantic web. To help open ILP to more mainstream research areas, the conference featured three excellent invited talks from the domains of the semantic web (Frank van Harmelen), bioinformatics (Mark Craven) and cognitive sciences (Josh Tenenbaum). We deliberately looked for speakers who are not directly involved in ILP research. We further invited a tutorial on stat- tical relational learning (Kristian Ke
出版日期Conference proceedings 2008
關(guān)鍵詞Bayesian networks; algorithmic learning; biological grammar induction; classifier systems; clustering; da
版次1
doihttps://doi.org/10.1007/978-3-540-85928-4
isbn_softcover978-3-540-85927-7
isbn_ebook978-3-540-85928-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

書目名稱Inductive Logic Programming影響因子(影響力)




書目名稱Inductive Logic Programming影響因子(影響力)學(xué)科排名




書目名稱Inductive Logic Programming網(wǎng)絡(luò)公開度




書目名稱Inductive Logic Programming網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Inductive Logic Programming被引頻次




書目名稱Inductive Logic Programming被引頻次學(xué)科排名




書目名稱Inductive Logic Programming年度引用




書目名稱Inductive Logic Programming年度引用學(xué)科排名




書目名稱Inductive Logic Programming讀者反饋




書目名稱Inductive Logic Programming讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:55:03 | 只看該作者
An Experiment in Robot Discovery with ILPh predicate invention. In the first experimental scenario in a pushing blocks domain, the robot discovers the notion of objects’ movability. The second scenario is about discovering the notion of obstacle. We describe experiments with a simulated robot, as well as an experiment with a real robot when robot’s observations contain noise.
板凳
發(fā)表于 2025-3-22 03:50:50 | 只看該作者
地板
發(fā)表于 2025-3-22 05:01:34 | 只看該作者
5#
發(fā)表于 2025-3-22 09:35:45 | 只看該作者
6#
發(fā)表于 2025-3-22 14:30:12 | 只看該作者
7#
發(fā)表于 2025-3-22 19:46:56 | 只看該作者
L-Modified ILP Evaluation Functions for Positive-Only Biological Grammar Learningication improves the performance of induced grammars when learning on short, medium or long NPPs-middles. A potential disadvantage of L-modification is discussed. Finally, we show that, as the limit on the search space size increases, the greater is the increase in predictive performance arising from L-modification.
8#
發(fā)表于 2025-3-23 00:15:42 | 只看該作者
9#
發(fā)表于 2025-3-23 03:19:56 | 只看該作者
10#
發(fā)表于 2025-3-23 06:09:03 | 只看該作者
Logical Hierarchical Hidden Markov Models for Modeling User Activitiesierarchical HMMs. We outline two inference algorithms: one based on grounding the LoHiHMM to a propositional HMM and the other based on particle filtering adapted for this setting. We present the results of our experiments with the model in two simulated domains.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 00:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吴旗县| 固始县| 武陟县| 屯留县| 方正县| 舟曲县| 合阳县| 济南市| 竹溪县| 岗巴县| 桂阳县| 南昌县| 闵行区| 天柱县| 巴林右旗| 红河县| 松阳县| 汪清县| 前郭尔| 崇信县| 峡江县| 卢氏县| 吴旗县| 印江| 麟游县| 泽州县| 新宾| 台前县| 容城县| 云霄县| 偃师市| 济阳县| 河池市| 高雄县| 宝坻区| 开原市| 开鲁县| 安阳县| 威远县| 苍溪县| 屏东县|