找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Inductive Logic Programming; 17th International C Hendrik Blockeel,Jan Ramon,Prasad Tadepalli Conference proceedings 2008 Springer-Verlag B

[復制鏈接]
查看: 20311|回復: 65
樓主
發(fā)表于 2025-3-21 20:09:31 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Inductive Logic Programming
副標題17th International C
編輯Hendrik Blockeel,Jan Ramon,Prasad Tadepalli
視頻videohttp://file.papertrans.cn/464/463896/463896.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Inductive Logic Programming; 17th International C Hendrik Blockeel,Jan Ramon,Prasad Tadepalli Conference proceedings 2008 Springer-Verlag B
出版日期Conference proceedings 2008
關(guān)鍵詞data mining; knowledge; knowledge representation; learning; logic; machine learning; programming; reinforce
版次1
doihttps://doi.org/10.1007/978-3-540-78469-2
isbn_softcover978-3-540-78468-5
isbn_ebook978-3-540-78469-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

書目名稱Inductive Logic Programming影響因子(影響力)




書目名稱Inductive Logic Programming影響因子(影響力)學科排名




書目名稱Inductive Logic Programming網(wǎng)絡(luò)公開度




書目名稱Inductive Logic Programming網(wǎng)絡(luò)公開度學科排名




書目名稱Inductive Logic Programming被引頻次




書目名稱Inductive Logic Programming被引頻次學科排名




書目名稱Inductive Logic Programming年度引用




書目名稱Inductive Logic Programming年度引用學科排名




書目名稱Inductive Logic Programming讀者反饋




書目名稱Inductive Logic Programming讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:01:56 | 只看該作者
Beyond Prediction: Directions for Probabilistic and Relational Learning can address. Recent work has extended these boundaries even further by unifying these two powerful learning frameworks. However, new frontiers await. Current techniques are capable of learning only a subset of the knowledge needed by practitioners in important domains, and further unification of pr
板凳
發(fā)表于 2025-3-22 02:57:59 | 只看該作者
Learning Probabilistic Logic Models from Probabilistic Examples (Extended Abstract)data sets used by most PILP systems and applications have non-probabilistic class values, like those used in ILP systems. The main reason for this is the lack of an obvious source of probabilistic class values. In this context, we investigate the use of Abductive Stochastic Logic Programs (SLPs) for
地板
發(fā)表于 2025-3-22 04:58:20 | 只看該作者
5#
發(fā)表于 2025-3-22 10:16:39 | 只看該作者
Learning to Assign Degrees of Belief in Relational Domainsly based on our judgements of the probability of uncertain events such as success in a new medical treatment or the state of the market. For example, if an agent wishes to employ the expected-utility paradigm of decision theory in order to guide its actions, it must assign subjective probabilities t
6#
發(fā)表于 2025-3-22 14:57:52 | 只看該作者
7#
發(fā)表于 2025-3-22 17:43:22 | 只看該作者
8#
發(fā)表于 2025-3-23 00:03:30 | 只看該作者
Clustering Relational Data Based on Randomized Propositionalizationh based on randomized propositionalization, which allows for applying standard clustering algorithms like KMeans to multi-relational data. We describe how random rules are generated and then turned into boolean-valued features. Clustering generally is not straightforward to evaluate, but preliminary
9#
發(fā)表于 2025-3-23 02:30:53 | 只看該作者
Structural Statistical Software Testing with Active Learning in a Graph exploits the . in the control flow graph, that is, paths which are actually exerted for some values of the program input; the limitation is that feasible paths are massively outnumbered by infeasible ones. Addressing this limitation, this paper presents an active learning algorithm aimed at samplin
10#
發(fā)表于 2025-3-23 06:05:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 06:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
临湘市| 买车| 临沧市| 长葛市| 麻江县| 内丘县| 建水县| 云梦县| 长春市| 江城| 柏乡县| 云阳县| 赣榆县| 乌拉特中旗| 土默特右旗| 涪陵区| 延吉市| 秦安县| 山东省| 拉萨市| 南岸区| 元江| 泰兴市| 丽江市| 河津市| 来凤县| 巨鹿县| 本溪市| 宿松县| 奉节县| 余庆县| 米泉市| 双辽市| 滁州市| 莒南县| 三台县| 连州市| 仁寿县| 长沙县| 全椒县| 嘉荫县|