找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Incremental Learning for Motion Prediction of Pedestrians and Vehicles; Alejandro Dizan Vasquez Govea Book 2010 Springer-Verlag Berlin Hei

[復(fù)制鏈接]
查看: 54718|回復(fù): 44
樓主
發(fā)表于 2025-3-21 19:40:52 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Incremental Learning for Motion Prediction of Pedestrians and Vehicles
編輯Alejandro Dizan Vasquez Govea
視頻videohttp://file.papertrans.cn/464/463354/463354.mp4
概述Recent research in the area of motion prediction of Pedestrians and Vehicles.Presents the modeling, learning and prediction of motion.Based on the winning thesis of the EURON Georges Giralt award
叢書名稱Springer Tracts in Advanced Robotics
圖書封面Titlebook: Incremental Learning for Motion Prediction of Pedestrians and Vehicles;  Alejandro Dizan Vasquez Govea Book 2010 Springer-Verlag Berlin Hei
描述.Modeling and predicting human and vehicle motion is an active research domain.Owing to the difficulty in modeling the various factors that determine motion(e.g. internal state, perception) this is often tackled by applying machinelearning techniques to build a statistical model, using as input a collectionof trajectories gathered through a sensor (e.g. camera, laser scanner), and thenusing that model to predict further motion. Unfortunately, most currenttechniques use offline learning algorithms, meaning that they are not able tolearn new motion patterns once the learning stage has finished...This books presents a lifelong learning approach where motion patterns can belearned incrementally, and in parallel with prediction. The approach is based ona novel extension to hidden Markov models, and the main contribution presentedin this book, called growing hidden Markov models, which gives us the ability tolearn incrementally both the parameters and the structure of the model. Theproposed approach has been extensively validated with synthetic and realtrajectory data. In our experiments our approach consistently learned motionmodels that were more compact and accurate than those produce
出版日期Book 2010
關(guān)鍵詞Hidden Markov Models; Motion prediction; behaviour modelling; hidden markov model; machine learning; robo
版次1
doihttps://doi.org/10.1007/978-3-642-13642-9
isbn_softcover978-3-642-26385-9
isbn_ebook978-3-642-13642-9Series ISSN 1610-7438 Series E-ISSN 1610-742X
issn_series 1610-7438
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

書目名稱Incremental Learning for Motion Prediction of Pedestrians and Vehicles影響因子(影響力)




書目名稱Incremental Learning for Motion Prediction of Pedestrians and Vehicles影響因子(影響力)學(xué)科排名




書目名稱Incremental Learning for Motion Prediction of Pedestrians and Vehicles網(wǎng)絡(luò)公開度




書目名稱Incremental Learning for Motion Prediction of Pedestrians and Vehicles網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Incremental Learning for Motion Prediction of Pedestrians and Vehicles被引頻次




書目名稱Incremental Learning for Motion Prediction of Pedestrians and Vehicles被引頻次學(xué)科排名




書目名稱Incremental Learning for Motion Prediction of Pedestrians and Vehicles年度引用




書目名稱Incremental Learning for Motion Prediction of Pedestrians and Vehicles年度引用學(xué)科排名




書目名稱Incremental Learning for Motion Prediction of Pedestrians and Vehicles讀者反饋




書目名稱Incremental Learning for Motion Prediction of Pedestrians and Vehicles讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:55:23 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:46:05 | 只看該作者
地板
發(fā)表于 2025-3-22 05:33:18 | 只看該作者
5#
發(fā)表于 2025-3-22 08:55:09 | 只看該作者
6#
發(fā)表于 2025-3-22 16:01:11 | 只看該作者
7#
發(fā)表于 2025-3-22 19:23:16 | 只看該作者
8#
發(fā)表于 2025-3-22 22:03:19 | 只看該作者
9#
發(fā)表于 2025-3-23 04:30:37 | 只看該作者
10#
發(fā)表于 2025-3-23 07:04:02 | 只看該作者
e Ergebnisse sind deshalb für Hersteller biometrischer Systeme, Urheber von Gesetzen, Vorschriften, Standards und Normen und für Entscheidungstr?ger des IT-Sicherheitsmanagements im Unternehmen interessant..978-3-658-23465-2978-3-658-23466-9Series ISSN 2946-0301 Series E-ISSN 2946-031X
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 15:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
佳木斯市| 修武县| 绩溪县| 正安县| 海城市| 富宁县| 简阳市| 客服| 昭平县| 商水县| 酉阳| 什邡市| 牡丹江市| 上思县| 金秀| 福建省| 宜阳县| 石渠县| 伊通| 乐平市| 彭阳县| 绍兴市| 焉耆| 咸阳市| 漳浦县| 西乌| 白玉县| 新丰县| 麻江县| 荥经县| 沙雅县| 梨树县| 大丰市| 台前县| 伊金霍洛旗| 中牟县| 闸北区| 花莲市| 木里| 民权县| 河津市|