找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: In the Tradition of Thurston; Geometry and Topolog Ken’ichi Ohshika,Athanase Papadopoulos Book 2020 Springer Nature Switzerland AG 2020 3-m

[復(fù)制鏈接]
樓主: Neogamist
31#
發(fā)表于 2025-3-27 00:15:11 | 只看該作者
https://doi.org/10.1007/978-3-030-55928-13-manifolds; surfaces; foliations; hyperbolic geometry; Teichmüller theory
32#
發(fā)表于 2025-3-27 01:14:52 | 只看該作者
33#
發(fā)表于 2025-3-27 08:02:14 | 只看該作者
,Thurston’s Influence on Japanese Topologists up to the 1980s,In this chapter, I describe how Thurston’s work influenced Japanese topologists, focusing on the period 1970s–1980s.
34#
發(fā)表于 2025-3-27 09:26:28 | 只看該作者
35#
發(fā)表于 2025-3-27 17:16:34 | 只看該作者
36#
發(fā)表于 2025-3-27 18:06:34 | 只看該作者
37#
發(fā)表于 2025-3-27 22:41:15 | 只看該作者
38#
發(fā)表于 2025-3-28 03:44:36 | 只看該作者
The Double Limit Theorem and Its Legacy,This chapter surveys recent and less recent results on convergence of Kleinian representations, following Thurston’s Double Limit and “.(acylindrical) is compact” Theorems.
39#
發(fā)表于 2025-3-28 08:09:41 | 只看該作者
Big Mapping Class Groups: An Overview,We survey recent developments on mapping class groups of surfaces of infinite topological type.
40#
發(fā)表于 2025-3-28 14:28:38 | 只看該作者
,Teichmüller Theory, Thurston Theory, Extremal Length Geometry and Complex Analysis,The aim of this chapter is to report on a recent progress of the author’s research on Complex analysis on Teichmüller space based on Thurston’s theory on surface topology. The main goal is to give a characterization of the pluriharmonic measures and the Poisson kernel (in the sense of Demailly) on the Bers slices via Extremal length geometry.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 12:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铜川市| 博罗县| 邛崃市| 五河县| 枣阳市| 宁陵县| 黔西| 三门峡市| 宿松县| 新化县| 贵德县| 洛宁县| 收藏| 环江| 余江县| 马尔康县| 德州市| 英超| 阿城市| 青河县| 阿尔山市| 克东县| 罗源县| 夹江县| 兴安盟| 栖霞市| 高青县| 台前县| 广昌县| 临安市| 台州市| 松溪县| 都昌县| 兴和县| 扎囊县| 堆龙德庆县| 寿宁县| 襄汾县| 白水县| 积石山| 印江|