找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Imre Lakatos and Theories of Scientific Change; Kostas Gavroglu,Yorgos Goudaroulis,Pantelis Nicola Book 1989 Kluwer Academic Publishers 19

[復(fù)制鏈接]
樓主: 人工合成
21#
發(fā)表于 2025-3-25 07:11:17 | 只看該作者
Fan Dainianes labelled by the residues 0,1, ... , n-1, of integers modulo n, and 2n links i ai + e, i → ., for i = 0,1, ... , n - 1. Many 2-regular digraphs popular as topologies for interconnecting networks are special EDLNs. For example, . 2, 0; 2, 1) is the generalized de Bruijn network [6],[9], . -2, -1; -
22#
發(fā)表于 2025-3-25 08:06:55 | 只看該作者
Risto Hilpinenes labelled by the residues 0,1, ... , n-1, of integers modulo n, and 2n links i ai + e, i → ., for i = 0,1, ... , n - 1. Many 2-regular digraphs popular as topologies for interconnecting networks are special EDLNs. For example, . 2, 0; 2, 1) is the generalized de Bruijn network [6],[9], . -2, -1; -
23#
發(fā)表于 2025-3-25 11:47:35 | 只看該作者
d on problems related to the addition of integers. Some classical problems like the Waring problem on the sum of k-th powers or the Goldbach conjecture are genuine examples of the original questions addressed in the area. One of the features of contemporary additive combinatorics is the interplay of
24#
發(fā)表于 2025-3-25 17:41:59 | 只看該作者
Marcello Ciniical additive number theory, mainly focussed on problems related to the addition of integers. Some classical problems like the Waring problem on the sum of k-th powers or the Goldbach conjecture are genuine examples of the original questions addressed in the area. One of the features of contemporary
25#
發(fā)表于 2025-3-25 23:33:13 | 只看該作者
26#
發(fā)表于 2025-3-26 01:53:46 | 只看該作者
C. Ulises Moulinesical additive number theory, mainly focussed on problems related to the addition of integers. Some classical problems like the Waring problem on the sum of k-th powers or the Goldbach conjecture are genuine examples of the original questions addressed in the area. One of the features of contemporary
27#
發(fā)表于 2025-3-26 07:28:54 | 只看該作者
28#
發(fā)表于 2025-3-26 11:38:03 | 只看該作者
29#
發(fā)表于 2025-3-26 15:21:27 | 只看該作者
30#
發(fā)表于 2025-3-26 19:25:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 05:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新民市| 滦南县| 明水县| 长丰县| 新民市| 富民县| 洛隆县| 成都市| 长治市| 玛多县| 宾阳县| 富平县| 项城市| 舒城县| 静安区| 道孚县| 丰镇市| 昌都县| 图们市| 曲周县| 乌兰察布市| 巴南区| 锡林郭勒盟| 高唐县| 公主岭市| 阿克苏市| 济源市| 平安县| 石家庄市| 石棉县| 芮城县| 桐城市| 龙山县| 五华县| 尖扎县| 汕尾市| 长葛市| 禹州市| 肥东县| 固原市| 古浪县|