找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Implicit Functions and Solution Mappings; A View from Variatio Asen L. Dontchev,R. Tyrrell Rockafellar Textbook 2014Latest edition Springer

[復(fù)制鏈接]
樓主: Sediment
11#
發(fā)表于 2025-3-23 10:59:42 | 只看該作者
Implicit Functions and Solution Mappings978-1-4939-1037-3Series ISSN 1431-8598 Series E-ISSN 2197-1773
12#
發(fā)表于 2025-3-23 17:24:25 | 只看該作者
13#
發(fā)表于 2025-3-23 21:39:04 | 只看該作者
Set-Valued Analysis of Solution Mappings,equalities, we have always had to face the possibility that solutions might not exist, or might not be unique when they do exist. This goes all the way back to the setting of the classical implicit function theorem.
14#
發(fā)表于 2025-3-23 22:25:03 | 只看該作者
https://doi.org/10.1007/978-1-4939-1037-3Graphical differentiation; Implicit functions; Metric regularity in infinite dimensions; Radius theorem
15#
發(fā)表于 2025-3-24 05:17:19 | 只看該作者
16#
發(fā)表于 2025-3-24 07:32:10 | 只看該作者
17#
發(fā)表于 2025-3-24 11:53:11 | 只看該作者
Metric Regularity Through Generalized Derivatives,hat conclusions about a solution mapping, concerning the Aubin property, say, or the existence of a single-valued localization, can be drawn by confirming that some auxiliary solution mapping, obtained from a kind of approximation, has the property in question. In the classical framework, we can app
18#
發(fā)表于 2025-3-24 15:54:50 | 只看該作者
19#
發(fā)表于 2025-3-24 22:47:07 | 只看該作者
20#
發(fā)表于 2025-3-25 00:54:55 | 只看該作者
the Philipps-Universit¨ at in Marburg. They have contributed to the f- damental understanding and to many applications in the area of coherent semiconductor optics. The one-dimensional tight-binding model, which is exclusively treated in the present book, has been the basis of many of their diploma
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 04:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云林县| 浮梁县| 南和县| 花莲县| 正阳县| 红桥区| 永济市| 辽源市| 苏尼特右旗| 高阳县| 东光县| 康平县| 玉屏| 宜宾市| 巴彦县| 佛坪县| 赣榆县| 合水县| 确山县| 迁西县| 深圳市| 河西区| 莆田市| 伊川县| 北宁市| 南城县| 富锦市| 永城市| 和政县| 泽州县| 东兴市| 台北市| 绥滨县| 齐河县| 鄄城县| 贵阳市| 临城县| 山西省| 湘潭县| 雅江县| 阿图什市|