找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Implementing Collaboration Technologies in Industry; Case Examples and Le Bj?rn Erik Munkvold Book 2003 Bj?rn Erik Munkvold 2003 CSCW.Elect

[復(fù)制鏈接]
樓主: 我沒有辱罵
11#
發(fā)表于 2025-3-23 11:14:34 | 只看該作者
12#
發(fā)表于 2025-3-23 14:23:05 | 只看該作者
13#
發(fā)表于 2025-3-23 18:26:53 | 只看該作者
14#
發(fā)表于 2025-3-24 00:01:38 | 只看該作者
15#
發(fā)表于 2025-3-24 03:13:02 | 只看該作者
Bj?rn Erik Munkvoldreplaced by one on arbitrarily varying channels. Chapter 7 has been greatly enlarged. Chapter 8 on semi-continuous channels has been drastically shortened, and Chapter 11 on sequential decoding completely removed. The new Chapters 11-15 consist entirely of material which has been developed only in the last fe978-3-642-66824-1978-3-642-66822-7
16#
發(fā)表于 2025-3-24 06:46:28 | 只看該作者
17#
發(fā)表于 2025-3-24 12:34:20 | 只看該作者
Bj?rn Erik Munkvolde material should be arranged. In determining the final arrangement I tried to obtain an order whichmakes reading easy and yet is not illogical. I can only hope that the resultant compromises do not earn me the criticism that I failed on both counts. There are a very few instances in the monograph w
18#
發(fā)表于 2025-3-24 18:42:08 | 只看該作者
19#
發(fā)表于 2025-3-24 21:23:34 | 只看該作者
Leysia Palen,Jonathan Grudine linear codes have been derived. For s=2, it is shown that the strongly regular graph of this code gives rise to the Hadamard difference sets v=2., k=2.-2., λ=2.-2. and v=2., k= 2.+2., λ=2.+2.. In fact, the author has now shown that this construction can be extended to derive the Hadamard differenc
20#
發(fā)表于 2025-3-25 02:27:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 16:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桦川县| 宜宾市| 常熟市| 鹿邑县| 新竹市| 高安市| 阿拉尔市| 开阳县| 石阡县| 永川市| 霍山县| 尚义县| 无棣县| 东乡县| 宁陕县| 新宁县| 杭州市| 崇礼县| 福鼎市| 汉阴县| 大化| 德兴市| 武乡县| 通河县| 新源县| 江口县| 辽中县| 江津市| 科技| 绿春县| 本溪市| 沾益县| 河津市| 樟树市| 唐河县| 宜君县| 汉中市| 清河县| 长沙市| 菏泽市| 开封县|