找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Implementation and Application of Automata; 15th International C Michael Domaratzki,Kai Salomaa Conference proceedings 2011 Springer Berlin

[復制鏈接]
樓主: aspirant
61#
發(fā)表于 2025-4-1 04:42:42 | 只看該作者
Partial Derivative Automata Formalized in ,,In this paper we present a computer assisted proof of the correctness of a partial derivative automata construction from a regular expression within the . proof assistant. This proof is part of a formalization of Kleene algebra and regular languages in . towards their usage in program certification.
62#
發(fā)表于 2025-4-1 09:38:09 | 只看該作者
Regular Geometrical Languages and Tiling the Plane,We show that if a binary language . is regular, prolongable and geometrical, then it can generate, on certain assumptions, a .1 type tiling of a part of ?.. We also show that the sequence of states that appear along a horizontal line in such a tiling only depends on the shape of the tiling sub-figure and is somehow periodic.
63#
發(fā)表于 2025-4-1 10:59:25 | 只看該作者
64#
發(fā)表于 2025-4-1 17:50:29 | 只看該作者
Norbert Hundeshagen,Friedrich Otto,Marcel Vollweilerh neighboring nwnbers of atoms. The difference between clusters and small particles is such that parameters of small particles are monotonic functions of the nw978-1-4612-7082-9978-1-4612-1294-2Series ISSN 0938-037X
65#
發(fā)表于 2025-4-1 18:50:27 | 只看該作者
From Sequential Extended Regular Expressions to NFA with Symbolic Labels, been implemented in the . library, with Binary Decision Diagrams (BDD) used to represent transition labels..We carried out a thorough experimental evaluation over a set of realistic benchmarks, comparing our library against . (which uses deterministic finite automata with BDD-based symbolic transit
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
临泽县| 建平县| 宁德市| 安义县| 旌德县| 井陉县| 莎车县| 重庆市| 新宾| 张家界市| 汪清县| 抚顺县| 藁城市| 克拉玛依市| 汾西县| 壤塘县| 松原市| 永定县| 兴业县| 阳城县| 大理市| 乐安县| 鲁甸县| 姜堰市| 孟州市| 富宁县| 巴林右旗| 永丰县| 德钦县| 莲花县| 四平市| 滨州市| 保山市| 扶风县| 辛集市| 龙川县| 叶城县| 舞钢市| 广东省| 安阳市| 卓资县|