找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons; Julian Knaup Book 2022 The Editor(s) (if applicable)

[復(fù)制鏈接]
查看: 10253|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:57:01 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons
編輯Julian Knaup
視頻videohttp://file.papertrans.cn/463/462369/462369.mp4
叢書名稱BestMasters
圖書封面Titlebook: Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons;  Julian Knaup Book 2022 The Editor(s) (if applicable)
描述Multilayer neural networks based on multi-valued neurons (MLMVNs) have been proposed to combine the advantages of complex-valued neural networks with a plain derivative-free learning algorithm. In addition, multi-valued neurons (MVNs) offer a multi-valued threshold logic resulting in the ability to replace multiple conventional output neurons in classification tasks. Therefore, several classes can be assigned to one output neuron. This book introduces a novel approach to assign multiple classes to numerous MVNs in the output layer. It was found that classes that possess similarities should be allocated to the same neuron and arranged adjacent to each other on the unit circle. Since MLMVNs require input data located on the unit circle, two employed transformations are reevaluated. The min-max scaler utilizing the exponential function, and the 2D discrete Fourier transform restricting to the phase information for image recognition. The evaluation was performed on the Sensorless Drive Diagnosis dataset and the Fashion MNIST dataset.
出版日期Book 2022
關(guān)鍵詞MLMVN; MVN; Class Assignment; Complex-Valued; Machine Learning; Classification; CVNN; Fourier Transform; Pha
版次1
doihttps://doi.org/10.1007/978-3-658-38955-0
isbn_softcover978-3-658-38954-3
isbn_ebook978-3-658-38955-0Series ISSN 2625-3577 Series E-ISSN 2625-3615
issn_series 2625-3577
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
The information of publication is updating

書目名稱Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons影響因子(影響力)




書目名稱Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons影響因子(影響力)學科排名




書目名稱Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons網(wǎng)絡(luò)公開度




書目名稱Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons網(wǎng)絡(luò)公開度學科排名




書目名稱Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons被引頻次




書目名稱Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons被引頻次學科排名




書目名稱Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons年度引用




書目名稱Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons年度引用學科排名




書目名稱Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons讀者反饋




書目名稱Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:29:01 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:32:48 | 只看該作者
https://doi.org/10.1007/978-3-658-38955-0MLMVN; MVN; Class Assignment; Complex-Valued; Machine Learning; Classification; CVNN; Fourier Transform; Pha
地板
發(fā)表于 2025-3-22 05:23:04 | 只看該作者
Introduction,ore, machine learning has recently gained popularity and importance. In particular, areas of pattern recognition and natural language processing have been revolutionized by Deep Learning [KSH12][HS97].
5#
發(fā)表于 2025-3-22 09:53:51 | 只看該作者
Preliminaries,are introduced in Chapter 2.1, and then the computational models of artificial neural networks are explored in more detail in Chapter 2.2. For this purpose, a brief review of the history of artificial neural networks is given, and their architecture and training are discussed.
6#
發(fā)表于 2025-3-22 15:33:22 | 只看該作者
7#
發(fā)表于 2025-3-22 20:03:10 | 只看該作者
8#
發(fā)表于 2025-3-22 23:14:51 | 只看該作者
Evaluation,ter 5.2 presents two datasets and examines them for their class similarity. Afterwards, Chapter 5.3 provides the results of the evaluation. Finally, Chapter 5.4 concludes with a discussion and Chapter 5.5 summarizes the evaluation.
9#
發(fā)表于 2025-3-23 02:30:48 | 只看該作者
10#
發(fā)表于 2025-3-23 06:59:36 | 只看該作者
Conclusion and Outlook,This chapter summarizes the entire thesis and its findings. In addition, an outlook is given on topics that require further consideration.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 10:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
裕民县| 如皋市| 莲花县| 卓尼县| 永平县| 清水县| 龙里县| 特克斯县| 金塔县| 天镇县| 永胜县| 葵青区| 罗田县| 永昌县| 永修县| 徐汇区| 九江市| 克东县| 玛曲县| 昭觉县| 康定县| 吉林省| 察雅县| 甘泉县| 邳州市| 长白| 都昌县| 延庆县| 酒泉市| 太仓市| 凤冈县| 休宁县| 明光市| 吴旗县| 隆子县| 永泰县| 甘德县| 兴隆县| 资兴市| 庆云县| 义乌市|