找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Image and Graphics; 11th International C Yuxin Peng,Shi-Min Hu,Kun Xu Conference proceedings 2021 Springer Nature Switzerland AG 2021 artif

[復(fù)制鏈接]
樓主: 評估
31#
發(fā)表于 2025-3-26 23:13:12 | 只看該作者
32#
發(fā)表于 2025-3-27 04:36:52 | 只看該作者
33#
發(fā)表于 2025-3-27 07:42:53 | 只看該作者
Moving Object Detection Based on?Self-adaptive Contour Extractiononal neural network to extract more salient features and use region proposal network to generate candidate regions. Afterwards, the feature maps and proposal regions are inputed to ROI pooling layer followed with some fully connected layers to classify objects and regress bounding box. Simulation ex
34#
發(fā)表于 2025-3-27 09:30:29 | 只看該作者
35#
發(fā)表于 2025-3-27 17:22:25 | 只看該作者
Boundary Information Aggregation and?Adaptive Keypoint Combination Enhanced Object Detectionoint-based object detection method in order to better locate center keypoints of objects and adaptively combine keypoints to obtain more accurate bounding boxes. Specifically, to better locate center keypoints of objects, we aggregate boundary information by adding the center pooling operation to th
36#
發(fā)表于 2025-3-27 18:29:13 | 只看該作者
Accurate Oriented Instance Segmentation in Aerial Imagesin aerial images, methods detecting objects with axis-aligned boxes are unsuitable, since the orientation of objects is arbitrary. What’s more, the RoI pooling step existed in these systems results in the loss of spatial details due to the feature warping and resizing, which will degrade the segment
37#
發(fā)表于 2025-3-28 00:27:19 | 只看該作者
38#
發(fā)表于 2025-3-28 03:41:40 | 只看該作者
Skeleton-Aware Network for Aircraft Landmark Detection problem: .. We have a key observation: the aircraft is a rigid object with global structural relationships between local landmarks. This motivates us to progressively learn the global geometrical structure and local landmark localization in a coarse-to-fine guidance manner. In this paper, we propos
39#
發(fā)表于 2025-3-28 09:14:39 | 只看該作者
Efficient Spectral Pyramid and Spectral-Spatial Feature Interactive Hyperspectral Image Classificatiper, we propose a novel HSI classification method with a deeper network and fewer parameters. Two novel modules named the efficient spectral pyramid (ESP), and improved spectral-spatial feature interactive (SSI) are designed to improving the SS3FCN, which is proposed in our previous work. Specifical
40#
發(fā)表于 2025-3-28 13:56:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 00:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湖北省| 兴业县| 铁岭市| 同心县| 凤城市| 泸州市| 南漳县| 黄骅市| 罗田县| 河北省| 武宣县| 柳林县| 十堰市| 奉节县| 北川| 扎赉特旗| 菏泽市| 天津市| 砀山县| 白水县| 凤山市| 常州市| 临澧县| 德江县| 黔西| 博兴县| 富民县| 普陀区| 黔西| 同德县| 敖汉旗| 台前县| 安陆市| 延庆县| 建水县| 公主岭市| 邓州市| 武鸣县| 济源市| 淳化县| 栾川县|