找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Image and Graphics; 10th International C Yao Zhao,Nick Barnes,Chunyu Lin Conference proceedings 2019 Springer Nature Switzerland AG 2019 ar

[復(fù)制鏈接]
查看: 34805|回復(fù): 57
樓主
發(fā)表于 2025-3-21 17:03:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Image and Graphics
副標(biāo)題10th International C
編輯Yao Zhao,Nick Barnes,Chunyu Lin
視頻videohttp://file.papertrans.cn/462/461481/461481.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Image and Graphics; 10th International C Yao Zhao,Nick Barnes,Chunyu Lin Conference proceedings 2019 Springer Nature Switzerland AG 2019 ar
描述.This three-volume set LNCS 11901, 11902, and 11903 constitutes the refereed conference proceedings of the 10tht.h. International Conference on Image and Graphics, ICIG 2019, held in Beijing, China, in August 2019. The 183 full papers presented were selected from 384 submissions and focus on advances of theory, techniques and algorithms as well as innovative technologies of image, video and graphics processing and fostering innovation, entrepreneurship, and networking..
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; compression algorithms; computer vision; game and animation; image coding; image
版次1
doihttps://doi.org/10.1007/978-3-030-34113-8
isbn_softcover978-3-030-34112-1
isbn_ebook978-3-030-34113-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Image and Graphics影響因子(影響力)




書目名稱Image and Graphics影響因子(影響力)學(xué)科排名




書目名稱Image and Graphics網(wǎng)絡(luò)公開度




書目名稱Image and Graphics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Image and Graphics被引頻次




書目名稱Image and Graphics被引頻次學(xué)科排名




書目名稱Image and Graphics年度引用




書目名稱Image and Graphics年度引用學(xué)科排名




書目名稱Image and Graphics讀者反饋




書目名稱Image and Graphics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:23:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:33:56 | 只看該作者
地板
發(fā)表于 2025-3-22 05:22:16 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/i/image/461481.jpg
5#
發(fā)表于 2025-3-22 09:48:17 | 只看該作者
Conference proceedings 2019and Graphics, ICIG 2019, held in Beijing, China, in August 2019. The 183 full papers presented were selected from 384 submissions and focus on advances of theory, techniques and algorithms as well as innovative technologies of image, video and graphics processing and fostering innovation, entrepreneurship, and networking..
6#
發(fā)表于 2025-3-22 16:46:43 | 只看該作者
Measurement-Domain Spiral Predictive Coding for Block-Based Image Compressive Sensingsurement-domain spiral predictive coding method, which can make full use of the intrinsic spatial relationship of natural images. For the measurements of each compressive-sensing block, the optimal measurement prediction is selected from a set of measurement prediction candidates that are generated
7#
發(fā)表于 2025-3-22 17:04:09 | 只看該作者
Semantic Map Based Image Compression via Conditional Generative Adversarial Networkhe traditional compression algorithms usually introduce undesired compression artifacts, such as blocking and blurry effects. In this paper, we propose a novel semantic map based image compression framework (SMIC), restoring visually pleasing images at significantly low bit rate. At the encoder, a s
8#
發(fā)表于 2025-3-22 22:01:26 | 只看該作者
9#
發(fā)表于 2025-3-23 03:41:35 | 只看該作者
MHEF-TripNet: Mixed Triplet Loss with Hard Example Feedback Network for Image Retrievalgh. Because of the large imbalance between easy examples and hard examples, networks lack direct guidance information from hard examples. In this paper, we solve the problem by developing an effective and efficient method, called mixed triplet loss with hard example feedback network (MHEF-TripNet).
10#
發(fā)表于 2025-3-23 06:18:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 18:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
基隆市| 通河县| 大厂| 玛多县| 青神县| 获嘉县| 临海市| 津南区| 望奎县| 和静县| 神池县| 西充县| 上虞市| 宜兰市| 板桥市| 金坛市| 林周县| 如皋市| 施甸县| 安化县| 建始县| 新余市| 银川市| 呼伦贝尔市| 廊坊市| 伽师县| 高邑县| 伊金霍洛旗| 芒康县| 肇庆市| 万安县| 凉山| 西畴县| 临泽县| 普陀区| 马公市| 佛冈县| 南投县| 英山县| 乐都县| 内丘县|