找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Image Understanding using Sparse Representations; Jayaraman J. Tiagarajan,Karthikeyan Natesan Ramamu Book 2014 Springer Nature Switzerland

[復(fù)制鏈接]
樓主: fibrous-plaque
21#
發(fā)表于 2025-3-25 06:20:39 | 只看該作者
Image Understanding using Sparse Representations978-3-031-02250-0Series ISSN 1559-8136 Series E-ISSN 1559-8144
22#
發(fā)表于 2025-3-25 09:09:41 | 只看該作者
23#
發(fā)表于 2025-3-25 14:25:06 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:05 | 只看該作者
Book 2014ponent in image understanding, since they emulate the activity of neural receptors in the primary visual cortex of the human brain. Sparse methods have been utilized in several learning problems because of their ability to provide parsimonious, interpretable, and efficient models. Exploiting the spa
25#
發(fā)表于 2025-3-25 22:40:54 | 只看該作者
Sparse Models in Recognition,nce, adapting this representative model to perform discriminative tasks requires the incorporation of supervisory information into the sparse coding and dictionary learning problems. By introducing the prior knowledge on the sparsity of signals into the traditional machine learning algorithms, novel discriminative frameworks can be developed.
26#
發(fā)表于 2025-3-26 02:24:13 | 只看該作者
Dictionary Learning: Theory and Algorithms,are learned directly from the data result in an improved performance compared to both pre-defined as well as tuned dictionaries. This chapter will focus exclusively on learned dictionaries and their applications in various image processing tasks.
27#
發(fā)表于 2025-3-26 06:57:35 | 只看該作者
28#
發(fā)表于 2025-3-26 11:51:40 | 只看該作者
1559-8136 ortant component in image understanding, since they emulate the activity of neural receptors in the primary visual cortex of the human brain. Sparse methods have been utilized in several learning problems because of their ability to provide parsimonious, interpretable, and efficient models. Exploiti
29#
發(fā)表于 2025-3-26 16:02:58 | 只看該作者
30#
發(fā)表于 2025-3-26 17:01:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 04:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长沙市| 晋宁县| 鄄城县| 湘西| 永和县| 应城市| 紫金县| 肇庆市| 湖州市| 东至县| 邹城市| 南江县| 商水县| 东丰县| 文山县| 呈贡县| 尚义县| 什邡市| 云梦县| 西丰县| 乌苏市| 琼结县| 龙海市| 贡嘎县| 清原| 屯昌县| 交口县| 武义县| 奎屯市| 原阳县| 凤山县| 西和县| 黄浦区| 大足县| 长春市| 崇仁县| 施甸县| 房产| 郴州市| 霸州市| 乐安县|