找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Image Texture Analysis; Foundations, Models Chih-Cheng Hung,Enmin Song,Yihua Lan Textbook 2019 Springer Nature Switzerland AG 2019 Image T

[復制鏈接]
樓主: EXERT
21#
發(fā)表于 2025-3-25 04:24:49 | 只看該作者
Basic Concept and Models of the K-viewsrence matrix (GLCM) and local binary pattern (LBP). We emphasize on how to precisely describe the features of a texture and how to extract texture features directly from a sample patch (i.e., sub-image), and how to use these features to classify an image texture. The view concepts and related method
22#
發(fā)表于 2025-3-25 09:29:58 | 只看該作者
23#
發(fā)表于 2025-3-25 13:40:11 | 只看該作者
24#
發(fā)表于 2025-3-25 15:51:48 | 只看該作者
Advanced K-views Algorithmsdeveloped to improve K-views template (K-views-T) and K-views datagram (K-views-D) algorithms for image texture classification. The fast K-views-V algorithm uses a voting method for texture classification and an accelerating method based on the efficient summed square image (SSI) scheme as well as t
25#
發(fā)表于 2025-3-25 23:05:37 | 只看該作者
Foundation of Deep Machine Learning in Neural Networksneural networks. The deep machine learning is a very different approach in terms of feature extraction compared with the traditional feature extraction methods. This conventional feature extraction method has been widely used in the pattern recognition approach. The deep machine learning in neural n
26#
發(fā)表于 2025-3-26 02:43:26 | 只看該作者
Convolutional Neural Networks and Texture Classificationions. Similar toCognitron and Neocognitron, CNN can automatically learn the features of data with the multiple layers of neurons in the network. There are several different versions of the CNN which have been reported in the literature. If an original image texture is fed into the CNN, it will be ca
27#
發(fā)表于 2025-3-26 07:22:01 | 只看該作者
28#
發(fā)表于 2025-3-26 09:53:06 | 只看該作者
29#
發(fā)表于 2025-3-26 13:30:45 | 只看該作者
30#
發(fā)表于 2025-3-26 18:12:34 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 17:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
白城市| 台北县| 中山市| 壤塘县| 阿拉善左旗| 东丽区| 建德市| 大理市| 新竹市| 手机| 佛坪县| 曲阜市| 馆陶县| 泽普县| 惠州市| 页游| 八宿县| 鹰潭市| 同仁县| 休宁县| 紫云| 常德市| 洛南县| 昔阳县| 沾化县| 潼南县| 榆社县| 合作市| 沾化县| 长丰县| 秭归县| 湘乡市| 旺苍县| 灵川县| 武山县| 苗栗县| 基隆市| 红桥区| 赫章县| 沧源| 改则县|