找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Image Texture Analysis; Foundations, Models Chih-Cheng Hung,Enmin Song,Yihua Lan Textbook 2019 Springer Nature Switzerland AG 2019 Image T

[復(fù)制鏈接]
查看: 10867|回復(fù): 44
樓主
發(fā)表于 2025-3-21 19:37:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Image Texture Analysis
副標(biāo)題Foundations, Models
編輯Chih-Cheng Hung,Enmin Song,Yihua Lan
視頻videohttp://file.papertrans.cn/462/461468/461468.mp4
概述Reviews the state of the art in models and algorithms for texture analysis, including deep learning and image texture analysis.Introduces the K-View model and its advanced models, highlighting the ben
圖書封面Titlebook: Image Texture Analysis; Foundations, Models  Chih-Cheng Hung,Enmin Song,Yihua Lan Textbook 2019 Springer Nature Switzerland AG 2019 Image T
描述.This useful textbook/reference presents an accessible primer on the fundamentals of image texture analysis, as well as an introduction to the K-views model for extracting and classifying image textures. Divided into three parts, the book opens with a review of existing models and algorithms for image texture analysis, before delving into the details of the K-views model. The work then concludes with a discussion of popular deep learning methods for image texture analysis..Topics and features: provides self-test exercises in every chapter; describes the basics of image texture, texture features, and image texture classification and segmentation; examines a selection of widely-used methods for measuring and extracting texture features, and various algorithms for texture classification; explains the concepts of dimensionality reduction and sparse representation; discusses view-based approaches to classifying images; introduces the template for the K-views algorithm, as well as a range of variants of this algorithm; reviews several neural network models for deep machine learning, and presents a specific focus on convolutional neural networks..This introductory text on image texture an
出版日期Textbook 2019
關(guān)鍵詞Image Texture Analysis; Digital Image Processing; K-View Model; Texture Classification; Deep Learning; Co
版次1
doihttps://doi.org/10.1007/978-3-030-13773-1
isbn_softcover978-3-030-13775-5
isbn_ebook978-3-030-13773-1
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Image Texture Analysis影響因子(影響力)




書目名稱Image Texture Analysis影響因子(影響力)學(xué)科排名




書目名稱Image Texture Analysis網(wǎng)絡(luò)公開度




書目名稱Image Texture Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Image Texture Analysis被引頻次




書目名稱Image Texture Analysis被引頻次學(xué)科排名




書目名稱Image Texture Analysis年度引用




書目名稱Image Texture Analysis年度引用學(xué)科排名




書目名稱Image Texture Analysis讀者反饋




書目名稱Image Texture Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:36:17 | 只看該作者
e K-View model and its advanced models, highlighting the ben.This useful textbook/reference presents an accessible primer on the fundamentals of image texture analysis, as well as an introduction to the K-views model for extracting and classifying image textures. Divided into three parts, the book o
板凳
發(fā)表于 2025-3-22 02:33:29 | 只看該作者
地板
發(fā)表于 2025-3-22 06:55:45 | 只看該作者
s into the Chinese government and policy making.Details poli.This book is open access under a CC BY 4.0 license.?This book examines how China can increase the share of natural gas in its energy system. China’s energy strategy has global ramifications and impact, and central to this strategy is the c
5#
發(fā)表于 2025-3-22 08:55:32 | 只看該作者
s into the Chinese government and policy making.Details poli.This book is open access under a CC BY 4.0 license.?This book examines how China can increase the share of natural gas in its energy system. China’s energy strategy has global ramifications and impact, and central to this strategy is the c
6#
發(fā)表于 2025-3-22 15:25:52 | 只看該作者
7#
發(fā)表于 2025-3-22 19:23:50 | 只看該作者
Chih-Cheng Hung,Enmin Song,Yihua Lanand the subsidies are now set to end beginning in 2015 for the land that was first set aside, and later for other land. The question is whether the farmers will continue with the Grain for Green-induced land use changes, or will revert back to the pre-Grain for Green land uses once the subsidies end
8#
發(fā)表于 2025-3-22 23:24:54 | 只看該作者
Chih-Cheng Hung,Enmin Song,Yihua Lanation program, the success or failure of the Grain for Green depends in large part on its ecological impact. Its ecological impact can be assessed using such indicators as the amount of land converted and afforested, changes in vegetative cover, water surface runoff and, very importantly, soil chara
9#
發(fā)表于 2025-3-23 02:38:46 | 只看該作者
Chih-Cheng Hung,Enmin Song,Yihua Lano trees or grass. The program aims to improve the ecological conditions of much of China, and the socioeconomic circumstances of hundreds of millions of people. GfG is the largest reforestation, ecological restoration, and rural development initiative in history, combining the biggest investment, th
10#
發(fā)表于 2025-3-23 08:45:29 | 只看該作者
itutional, and ecological factors.Reviews and analyzes the e.This book provides a comprehensive review of Grain for Green, China’s nationwide program which pays farmers to revert sloping or marginal farm land to trees or grass. The program aims to improve the ecological conditions of much of China,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 13:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
筠连县| 公主岭市| 古蔺县| 辰溪县| 鹤庆县| 滦南县| 阳城县| 阿拉尔市| 喀喇沁旗| 临海市| 孟村| 昭平县| 东莞市| 姜堰市| 密云县| 新丰县| 贡嘎县| 贡山| 确山县| 沽源县| 巫山县| 甘孜| 海阳市| 深州市| 德州市| 炎陵县| 吉隆县| 双牌县| 眉山市| 和硕县| 沽源县| 建水县| 城步| 宁武县| 海盐县| 伊川县| 荥经县| 揭西县| 濉溪县| 宜都市| 德惠市|