找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Image Analysis and Processing — ICIAP 2015; 18th International C Vittorio Murino,Enrico Puppo Conference proceedings 2015 Springer Nature S

[復(fù)制鏈接]
樓主: VERSE
31#
發(fā)表于 2025-3-26 22:23:05 | 只看該作者
Fitting Multiple Models via Density Analysis in Tanimoto Spacekage, weakening the prior assumptions on the data: without requiring the tuning of the inlier threshold we develop a new automatic method which takes advantage of the geometric properties of Tanimoto space to bias the sampling toward promising models and exploits a density based analysis in the conc
32#
發(fā)表于 2025-3-27 01:51:32 | 只看該作者
Bag of Graphs with Geometric Relationships Among Trajectories for Better Human Action Recognitionlationships are provided by applying the Delaunay triangulation method on the trajectories of each video frame. Then, graph encoding method called bag of graphs (BOG) is proposed to handle the geometrical relationships between trajectories. BOG considers local graph descriptors to learn a more discr
33#
發(fā)表于 2025-3-27 08:22:14 | 只看該作者
Have a SNAK. Encoding Spatial Information with the Spatial Non-alignment Kernel recognition performance can be improved by including spatial information. A state of the art approach is the spatial pyramid representation, which divides the image into spatial bins. In this paper, another general approach that encodes the spatial information in a much better and efficient way is
34#
發(fā)表于 2025-3-27 12:18:34 | 只看該作者
Convolved Multi-output Gaussian Processes for Semi-Supervised Learninge of multiple and related tasks in real-world problems. Another approach called semi-supervised learning (SSL) is the middle point between the case where all training samples are labeled (supervised learning) and the case where all training samples are unlabeled (unsupervised learning). In many appl
35#
發(fā)表于 2025-3-27 13:52:10 | 只看該作者
36#
發(fā)表于 2025-3-27 18:59:30 | 只看該作者
Unsupervised Feature Selection by Graph Optimizationly used criterion in graph based feature selection methods is to select the features which best preserve the data similarity or a manifold structure derived from the entire feature set. However, these methods separate the processes of learning the feature similarity graph and feature ranking. In pra
37#
發(fā)表于 2025-3-28 00:36:13 | 只看該作者
Gait Recognition Robust to Speed Transition Using Mutual Subspace Methododel to transform gait features from various speeds into a common walking speed, and the model was trained with gait images with a variety of speeds. However in case that a subject walks with a speed which is not trained in the model, the performance gets worse. In this paper we introduce an idea th
38#
發(fā)表于 2025-3-28 04:17:12 | 只看該作者
39#
發(fā)表于 2025-3-28 09:54:44 | 只看該作者
Global and Local Gaussian Process for Multioutput and Treed Datacal tree with parent nodes on the upper layer and children nodes on the lower layer in order to represent the interaction between the multiple outputs.Then we compute the Multiple Output Gaussian Process (MGP) covariance matrix as a linear combination of a global multiple output covariance matrix (u
40#
發(fā)表于 2025-3-28 14:27:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 15:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平顺县| 太和县| 镇巴县| 长泰县| 类乌齐县| 汶上县| 精河县| 长丰县| 平塘县| 佳木斯市| 馆陶县| 旬阳县| 静乐县| 洱源县| 南京市| 斗六市| 巩留县| 句容市| 永平县| 阳西县| 丰城市| 中江县| 青河县| 石楼县| 通山县| 洛川县| 景泰县| 莆田市| 米易县| 巫山县| 砚山县| 黔西| 齐齐哈尔市| 彰化市| 淮南市| 龙山县| 上思县| 宜州市| 平顶山市| 德阳市| 临澧县|