找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Image Analysis; 18th Scandinavian Co Joni-Kristian K?m?r?inen,Markus Koskela Conference proceedings 2013 Springer-Verlag GmbH Germany, part

[復(fù)制鏈接]
樓主: hedonist
21#
發(fā)表于 2025-3-25 04:19:26 | 只看該作者
Cascaded Random Forest for Fast Object Detectionis paper we propose a Random Forest framework which incorporates a cascade structure consisting of several stages together with a bootstrap approach. By introducing the cascade, 99% of the test images can be rejected by the first and second stage with minimal computational effort leading to a massiv
22#
發(fā)表于 2025-3-25 07:39:20 | 只看該作者
Multiplicative Updates for Learning with Stochastic Matricesnt semantic analysis, etc. In such learning problems, the learned matrices, being stochastic matrices, are non-negative and all or part of the elements sum up to one. Conventional multiplicative updates which have been widely used for nonnegative learning cannot accommodate the stochasticity constra
23#
發(fā)表于 2025-3-25 15:01:56 | 只看該作者
24#
發(fā)表于 2025-3-25 18:20:53 | 只看該作者
25#
發(fā)表于 2025-3-25 21:11:44 | 只看該作者
Continuous-Space Gaussian Process Regression and Generalized Wiener Filtering with Application to Les model. We study abstract continuous-space Gaussian regression problems where the training set covers the whole input space instead of consisting of a finite number of distinct points. The model can be used for analyzing theoretical properties of Gaussian process regressors. In this paper, we prese
26#
發(fā)表于 2025-3-26 03:58:51 | 只看該作者
Approximations of Gaussian Process Uncertainties for Visual Recognition Problemsn result. This is especially useful to select informative samples in active learning and to spot samples of previously unseen classes known as novelty detection. However, the Gaussian process framework suffers from high computational complexity leading to computation times too large for practical ap
27#
發(fā)表于 2025-3-26 07:24:58 | 只看該作者
Topology-Preserving Dimension-Reduction Methods for Image Pattern Recognitiontern recognition uses pattern recognition techniques for the classification of image data. For the numerical achievement of image pattern recognition techniques, images are sampled using an array of pixels. This sampling procedure derives vectors in a higher-dimensional metric space from image patte
28#
發(fā)表于 2025-3-26 10:03:14 | 只看該作者
Texture Description with Completed Local Quantized Patternsses random initialization in vector quantization, this leads to losing the distribution of local patterns and costing much computational time. For reducing the unnecessary computational time of initialization, we use preselected dominant patterns as the initialization. Our experimental results show
29#
發(fā)表于 2025-3-26 14:46:39 | 只看該作者
30#
發(fā)表于 2025-3-26 17:26:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 00:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂溪县| 通辽市| 多伦县| 静乐县| 田林县| 泰安市| 廉江市| 新平| 宜黄县| 阿拉善右旗| 呼和浩特市| 缙云县| 龙泉市| 井陉县| 长武县| 合作市| 虞城县| 禄劝| 龙海市| 民勤县| 临湘市| 唐海县| 新民市| 苍山县| 贞丰县| 成安县| 新竹市| 甘洛县| 凤山市| 榆林市| 镇康县| 化隆| 承德县| 宁津县| 集安市| 日喀则市| 马鞍山市| 石棉县| 九江县| 邻水| 色达县|