找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Image Analysis; 22nd Scandinavian Co Rikke Gade,Michael Felsberg,Joni-Kristian K?m?r?in Conference proceedings 2023 The Editor(s) (if appli

[復(fù)制鏈接]
樓主: Magnanimous
21#
發(fā)表于 2025-3-25 06:17:03 | 只看該作者
Prototype Softmax Cross Entropy: A New Perspective on?Softmax Cross Entropy focus on the loss function for the feature encoder. We show that Softmax Cross Entropy (SCE) can be interpreted as a special kind of loss function in contrastive learning with prototypes. This insight provides a completely new perspective on cross entropy, allowing the derivation of a new generaliz
22#
發(fā)表于 2025-3-25 11:06:44 | 只看該作者
23#
發(fā)表于 2025-3-25 14:50:20 | 只看該作者
Synthesizing Hard Training Data from?Latent Hierarchical Representationsto classify. This is used for data from an automatic visual defect inspection system, specifically images of vials with and without chipped glass. The hard samples were found by training ConvNeXt classifiers and using the confidences of the classifiers on the training dataset. VQ-VAE2 was used to ob
24#
發(fā)表于 2025-3-25 19:36:57 | 只看該作者
Rigidity Preserving Image Transformations and?Equivariance in?Perspectiveurns out that the only rigidity preserving image transformations are homographies corresponding to rotating the camera. In particular, 2D translations of pinhole images are not rigidity preserving. Hence, when using CNNs for 3D inference tasks, it can be beneficial to modify the inductive bias from
25#
發(fā)表于 2025-3-25 22:18:58 | 只看該作者
Tangent Phylogenetic PCAations are not independent, due to shared evolutionary history. The method works on Euclidean data, but in evolutionary biology there is a need for applying it to data on manifolds, particularly shapes. We provide a generalization of p-PCA to data lying on Riemannian manifolds, called .. Tangent p-P
26#
發(fā)表于 2025-3-26 03:14:01 | 只看該作者
Deep Simplex Classifier for?Maximizing the?Margin in?Both?Euclidean and?Angular SpacesEuclidean or angular spaces. Euclidean distances between sample vectors are used during classification for the methods maximizing the margin in Euclidean spaces whereas the Cosine similarity distance is used during the testing stage for the methods maximizing margin in the angular spaces. This paper
27#
發(fā)表于 2025-3-26 06:15:16 | 只看該作者
28#
發(fā)表于 2025-3-26 09:22:55 | 只看該作者
29#
發(fā)表于 2025-3-26 16:20:37 | 只看該作者
From Local Binary Patterns to?Pixel Difference Networks for?Efficient Visual Representation Learningnal neural networks (CNNs) can automatically learn powerful task-aware features that are more discriminative and of higher representational capacity. To some extent, such hand-crafted features can be safely ignored when designing deep computer vision models. Nevertheless, due to LBP’s preferable pro
30#
發(fā)表于 2025-3-26 18:43:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 19:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江山市| 万年县| 磐石市| 道孚县| 辉县市| 鹿邑县| 旅游| 冀州市| 镇雄县| 衡阳市| 都兰县| 内黄县| 梁河县| 额济纳旗| 西宁市| 兰考县| 榆中县| 二连浩特市| 天峻县| 溧阳市| 秭归县| 东城区| 五常市| 东明县| 南部县| 库尔勒市| 汝州市| 江山市| 清流县| 旌德县| 紫金县| 彭州市| 南华县| 措勤县| 当雄县| 肇庆市| 平南县| 平度市| 遂昌县| 武强县| 苗栗市|