找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Image Analysis; 22nd Scandinavian Co Rikke Gade,Michael Felsberg,Joni-Kristian K?m?r?in Conference proceedings 2023 The Editor(s) (if appli

[復(fù)制鏈接]
樓主: Magnanimous
21#
發(fā)表于 2025-3-25 06:17:03 | 只看該作者
Prototype Softmax Cross Entropy: A New Perspective on?Softmax Cross Entropy focus on the loss function for the feature encoder. We show that Softmax Cross Entropy (SCE) can be interpreted as a special kind of loss function in contrastive learning with prototypes. This insight provides a completely new perspective on cross entropy, allowing the derivation of a new generaliz
22#
發(fā)表于 2025-3-25 11:06:44 | 只看該作者
23#
發(fā)表于 2025-3-25 14:50:20 | 只看該作者
Synthesizing Hard Training Data from?Latent Hierarchical Representationsto classify. This is used for data from an automatic visual defect inspection system, specifically images of vials with and without chipped glass. The hard samples were found by training ConvNeXt classifiers and using the confidences of the classifiers on the training dataset. VQ-VAE2 was used to ob
24#
發(fā)表于 2025-3-25 19:36:57 | 只看該作者
Rigidity Preserving Image Transformations and?Equivariance in?Perspectiveurns out that the only rigidity preserving image transformations are homographies corresponding to rotating the camera. In particular, 2D translations of pinhole images are not rigidity preserving. Hence, when using CNNs for 3D inference tasks, it can be beneficial to modify the inductive bias from
25#
發(fā)表于 2025-3-25 22:18:58 | 只看該作者
Tangent Phylogenetic PCAations are not independent, due to shared evolutionary history. The method works on Euclidean data, but in evolutionary biology there is a need for applying it to data on manifolds, particularly shapes. We provide a generalization of p-PCA to data lying on Riemannian manifolds, called .. Tangent p-P
26#
發(fā)表于 2025-3-26 03:14:01 | 只看該作者
Deep Simplex Classifier for?Maximizing the?Margin in?Both?Euclidean and?Angular SpacesEuclidean or angular spaces. Euclidean distances between sample vectors are used during classification for the methods maximizing the margin in Euclidean spaces whereas the Cosine similarity distance is used during the testing stage for the methods maximizing margin in the angular spaces. This paper
27#
發(fā)表于 2025-3-26 06:15:16 | 只看該作者
28#
發(fā)表于 2025-3-26 09:22:55 | 只看該作者
29#
發(fā)表于 2025-3-26 16:20:37 | 只看該作者
From Local Binary Patterns to?Pixel Difference Networks for?Efficient Visual Representation Learningnal neural networks (CNNs) can automatically learn powerful task-aware features that are more discriminative and of higher representational capacity. To some extent, such hand-crafted features can be safely ignored when designing deep computer vision models. Nevertheless, due to LBP’s preferable pro
30#
發(fā)表于 2025-3-26 18:43:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 01:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
徐汇区| 任丘市| 周至县| 宝鸡市| 弥渡县| 凌源市| 文化| 兴文县| 凤凰县| 习水县| 普洱| 个旧市| 太原市| 电白县| 清徐县| 开阳县| 佛山市| 灵璧县| 昌图县| 江安县| 黔东| 寿光市| 香港| 淮南市| 定结县| 常山县| 来宾市| 本溪市| 荆门市| 攀枝花市| 栾川县| 陈巴尔虎旗| 隆化县| 兴国县| 凌云县| 青铜峡市| 当涂县| 江山市| 玉林市| 绥阳县| 安化县|