找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ideals of Powers and Powers of Ideals; Intersecting Algebra Enrico Carlini,Huy Tài Hà,Adam Van Tuyl Book 2020 The Editor(s) (if applicable)

[復(fù)制鏈接]
查看: 19235|回復(fù): 50
樓主
發(fā)表于 2025-3-21 17:20:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Ideals of Powers and Powers of Ideals
副標(biāo)題Intersecting Algebra
編輯Enrico Carlini,Huy Tài Hà,Adam Van Tuyl
視頻videohttp://file.papertrans.cn/461/460766/460766.mp4
概述First book to contain a summary of known results on the associated primes of edge ideals.First book to contain a summary of known results on the regularity of powers of monomial ideals.Contains open p
叢書名稱Lecture Notes of the Unione Matematica Italiana
圖書封面Titlebook: Ideals of Powers and Powers of Ideals; Intersecting Algebra Enrico Carlini,Huy Tài Hà,Adam Van Tuyl Book 2020 The Editor(s) (if applicable)
描述This book discusses regular powers and symbolic powers of ideals from three perspectives– algebra, combinatorics and geometry – and examines the interactions between them. It invites readers to explore the evolution of the set of associated primes of higher and higher powers of an ideal and explains the evolution of ideals associated with combinatorial objects like graphs or hypergraphs in terms of the original combinatorial objects. It also addresses similar questions concerning ?our understanding of the Castelnuovo-Mumford regularity of powers of combinatorially defined ideals in terms of the associated combinatorial data. From a more geometric point of view, the book considers how the relations between symbolic and regular powers can be interpreted in geometrical terms.? Other topics covered include aspects of Waring type problems, symbolic powers of an ideal and their invariants (e.g., the Waldschmidt constant, the resurgence), and the persistence of associated primes...
出版日期Book 2020
關(guān)鍵詞Associated Primes; Castelnuovo-Mumford Regularity; Containment Problem; Edge and Cover Ideals of Finite
版次1
doihttps://doi.org/10.1007/978-3-030-45247-6
isbn_softcover978-3-030-45246-9
isbn_ebook978-3-030-45247-6Series ISSN 1862-9113 Series E-ISSN 1862-9121
issn_series 1862-9113
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Ideals of Powers and Powers of Ideals影響因子(影響力)




書目名稱Ideals of Powers and Powers of Ideals影響因子(影響力)學(xué)科排名




書目名稱Ideals of Powers and Powers of Ideals網(wǎng)絡(luò)公開度




書目名稱Ideals of Powers and Powers of Ideals網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Ideals of Powers and Powers of Ideals被引頻次




書目名稱Ideals of Powers and Powers of Ideals被引頻次學(xué)科排名




書目名稱Ideals of Powers and Powers of Ideals年度引用




書目名稱Ideals of Powers and Powers of Ideals年度引用學(xué)科排名




書目名稱Ideals of Powers and Powers of Ideals讀者反饋




書目名稱Ideals of Powers and Powers of Ideals讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:22:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:04:07 | 只看該作者
978-3-030-45246-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
地板
發(fā)表于 2025-3-22 07:24:39 | 只看該作者
Ideals of Powers and Powers of Ideals978-3-030-45247-6Series ISSN 1862-9113 Series E-ISSN 1862-9121
5#
發(fā)表于 2025-3-22 11:01:46 | 只看該作者
6#
發(fā)表于 2025-3-22 16:50:04 | 只看該作者
7#
發(fā)表于 2025-3-22 19:06:13 | 只看該作者
8#
發(fā)表于 2025-3-22 23:34:56 | 只看該作者
Associated Primes of Powers of Squarefree Monomial IdealsIn the previous chapter, we looked at a result of Brodmann (Theorem .) concerning the associated primes of powers of ideals. This theorem inspires a number of natural questions. To state these questions, we introduce some suitable terminology.
9#
發(fā)表于 2025-3-23 01:41:17 | 只看該作者
10#
發(fā)表于 2025-3-23 05:37:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 12:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
土默特左旗| 两当县| 呼伦贝尔市| 景宁| 板桥市| 闽侯县| 易门县| 曲麻莱县| 黄大仙区| 辽源市| 珲春市| 红桥区| 扶绥县| 东安县| 响水县| 黔南| 凤庆县| 章丘市| 龙江县| 东乌| 丰城市| 六枝特区| 樟树市| 扶绥县| 东乡族自治县| 绩溪县| 昌宁县| 康乐县| 阜城县| 图们市| 南昌县| 蓬溪县| 镇沅| 阿拉善右旗| 九台市| 湾仔区| 紫阳县| 珠海市| 军事| 临汾市| 政和县|