找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: IUTAM Symposium on Solver-Coupling and Co-Simulation; Proceedings of the I Bernhard Schweizer Conference proceedings 2019 Springer Nature S

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 15:31:07 | 只看該作者
42#
發(fā)表于 2025-3-28 19:52:31 | 只看該作者
Error Estimation Approach for Controlling the Communication Step-Size for Explicit Co-simulation Mek of the proposed communication-step size controller, each subsystem integration is carried out with two different explicit co-simulation methods. By comparing the variables for both integrations, an error estimator for the local error can be constructed. Making use of the estimated local error, a s
43#
發(fā)表于 2025-3-28 23:04:06 | 只看該作者
Stability and Error Analysis of Applied-Force Co-simulation Methods Using Mixed One-Step Integratioto subsystems in its mathematical representation, and re-coupled using a co-simulation scheme. Dealing separately with each subsystem, its own characteristics and specifically its own solver is the purpose of this decoupling/re-coupling mechanism. Before making a choice between all the existing solv
44#
發(fā)表于 2025-3-29 06:49:54 | 只看該作者
45#
發(fā)表于 2025-3-29 10:08:13 | 只看該作者
Constraint Coupling for Flexible Multibody Systems: Stabilization by Modified Spatial Discretizatioed using an algebraic constraint equation. The spatial discretization of flexible structures introduces an algebraic loop in the data exchange of subsystems. We investigate how this influences the stability and how modifying the discretization can help to stabilize the co-simulation.
46#
發(fā)表于 2025-3-29 13:28:05 | 只看該作者
Pu Li,Daixing Lu,Robert Schmoll,Bernhard Schweizerrts of different mathematical fields; frequently they bring simplifications and provide the impetus for new developments. The purpose of this book is to introduce the reader to the central part of category theory and to make the literature accessible to the reader who wishes to go farther. In prepar
47#
發(fā)表于 2025-3-29 16:04:22 | 只看該作者
J. P. Meijaardferent mathematical fields; frequently they bring simplifications and provide the impetus for new developments. The purpose of this book is to introduce the reader to the central part of category theory and to make the literature accessible to the reader who wishes to go farther. In preparing the En
48#
發(fā)表于 2025-3-29 22:30:08 | 只看該作者
Tobias Meyer,Jan Kraft,Daixing Lu,Bernhard Schweizerferent mathematical fields; frequently they bring simplifications and provide the impetus for new developments. The purpose of this book is to introduce the reader to the central part of category theory and to make the literature accessible to the reader who wishes to go farther. In preparing the En
49#
發(fā)表于 2025-3-30 01:27:04 | 只看該作者
Bryan Olivier,Olivier Verlinden,Georges Kouroussisferent mathematical fields; frequently they bring simplifications and provide the impetus for new developments. The purpose of this book is to introduce the reader to the central part of category theory and to make the literature accessible to the reader who wishes to go farther. In preparing the En
50#
發(fā)表于 2025-3-30 05:11:29 | 只看該作者
Marco Schauer,Francesca Taddei,Sissy Morawietzferent mathematical fields; frequently they bring simplifications and provide the impetus for new developments. The purpose of this book is to introduce the reader to the central part of category theory and to make the literature accessible to the reader who wishes to go farther. In preparing the En
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 14:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
瓦房店市| 临夏市| 永春县| 永仁县| 东兴市| 克什克腾旗| 富平县| 武汉市| 东港市| 荆州市| 昭通市| 潜山县| 惠州市| 清河县| 海口市| 丹凤县| 泰宁县| 定陶县| 留坝县| 石家庄市| 吉隆县| 青冈县| 武鸣县| 崇文区| 涡阳县| 乡城县| 板桥市| 时尚| 临颍县| 广南县| 且末县| 新疆| 漯河市| 修水县| 聊城市| 舟山市| 诸城市| 茶陵县| 青川县| 景谷| 芮城县|