找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics; A. B. Movchan Conference proceedings 2004 Sprin

[復制鏈接]
樓主: 夾子
41#
發(fā)表于 2025-3-28 16:30:45 | 只看該作者
Embedding Formulas and Singularities in Acoustic Scatteringo be related to 2. separate scattering problems for the same geometry, but with different boundary conditions. The number of separate problems that are required is shown to be determined by the number of singularities in the velocity field which in turn is given by the number of strip edges.
42#
發(fā)表于 2025-3-28 20:47:46 | 只看該作者
Dynamics of Charge Rotators and Lattice Waves in a Plasma Environment The dispersion characteristics of the modes are analyzed. The stability of different equilibrium orientations of the rods, phase transitions between the different equilibria, and a critical dependence on the relative strength of the confining potential are analyzed.
43#
發(fā)表于 2025-3-29 01:33:49 | 只看該作者
Propagation of Elastic Waves along Interfaces in Layered Beamserial are connected by a thin and soft adhesive: effectively the layer of adhesive can be described as a surface of discontinuity for the longitudinal displacement. The asymptotic method enables us to derive the . differential equations that describe waves associated with the displacement jump across the adhesive.
44#
發(fā)表于 2025-3-29 06:10:29 | 只看該作者
45#
發(fā)表于 2025-3-29 10:36:35 | 只看該作者
46#
發(fā)表于 2025-3-29 14:48:38 | 只看該作者
47#
發(fā)表于 2025-3-29 16:30:35 | 只看該作者
Transverse Propagating Waves in Perturbed Periodic Structuresmall perturbation to a circular boundary is introduced, and this can be used to derive the e ective boundary conditions for the perturbed inclusion. We examine the e ect of this perturbation on the dispersion curves for the material, and compare this with a finite element modelling of the perturbed structure.
48#
發(fā)表于 2025-3-29 23:41:14 | 只看該作者
49#
發(fā)表于 2025-3-30 02:52:39 | 只看該作者
50#
發(fā)表于 2025-3-30 06:44:55 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-19 05:08
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
法库县| 定兴县| 隆昌县| 郑州市| 东丰县| 江西省| 临澧县| 渑池县| 肥城市| 开封市| 岳阳县| 博客| 房山区| 华池县| 和田市| 大田县| 青阳县| 阳曲县| 贵南县| 射洪县| 涿鹿县| 西乡县| 河池市| 浙江省| 揭阳市| 南通市| 涞源县| 临洮县| 富锦市| 舟曲县| 道孚县| 怀远县| 上高县| 阜康市| 阳江市| 延边| 大姚县| 洛南县| 莱西市| 三明市| 湖南省|