找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics; A. B. Movchan Conference proceedings 2004 Sprin

[復(fù)制鏈接]
樓主: 夾子
41#
發(fā)表于 2025-3-28 16:30:45 | 只看該作者
Embedding Formulas and Singularities in Acoustic Scatteringo be related to 2. separate scattering problems for the same geometry, but with different boundary conditions. The number of separate problems that are required is shown to be determined by the number of singularities in the velocity field which in turn is given by the number of strip edges.
42#
發(fā)表于 2025-3-28 20:47:46 | 只看該作者
Dynamics of Charge Rotators and Lattice Waves in a Plasma Environment The dispersion characteristics of the modes are analyzed. The stability of different equilibrium orientations of the rods, phase transitions between the different equilibria, and a critical dependence on the relative strength of the confining potential are analyzed.
43#
發(fā)表于 2025-3-29 01:33:49 | 只看該作者
Propagation of Elastic Waves along Interfaces in Layered Beamserial are connected by a thin and soft adhesive: effectively the layer of adhesive can be described as a surface of discontinuity for the longitudinal displacement. The asymptotic method enables us to derive the . differential equations that describe waves associated with the displacement jump across the adhesive.
44#
發(fā)表于 2025-3-29 06:10:29 | 只看該作者
45#
發(fā)表于 2025-3-29 10:36:35 | 只看該作者
46#
發(fā)表于 2025-3-29 14:48:38 | 只看該作者
47#
發(fā)表于 2025-3-29 16:30:35 | 只看該作者
Transverse Propagating Waves in Perturbed Periodic Structuresmall perturbation to a circular boundary is introduced, and this can be used to derive the e ective boundary conditions for the perturbed inclusion. We examine the e ect of this perturbation on the dispersion curves for the material, and compare this with a finite element modelling of the perturbed structure.
48#
發(fā)表于 2025-3-29 23:41:14 | 只看該作者
49#
發(fā)表于 2025-3-30 02:52:39 | 只看該作者
50#
發(fā)表于 2025-3-30 06:44:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 13:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
雅江县| 陆丰市| 永善县| 临海市| 措美县| 湟中县| 万安县| 四平市| 彭泽县| 温宿县| 当阳市| 门源| 即墨市| 棋牌| 广宁县| 石楼县| 电白县| 库尔勒市| 新建县| 岳池县| 准格尔旗| 汕头市| 扎囊县| 永德县| 平遥县| 乾安县| 林甸县| 郸城县| 渝北区| 会宁县| 徐水县| 新丰县| 淮北市| 定南县| 仙居县| 滦平县| 澜沧| 天镇县| 河北省| 额尔古纳市| 应城市|