找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ICT with Intelligent Applications; Proceedings of ICTIS Tomonobu Senjyu,Parikshit N. Mahalle,Amit Joshi Conference proceedings 2022 The Edi

[復(fù)制鏈接]
樓主: 太平間
21#
發(fā)表于 2025-3-25 05:29:20 | 只看該作者
22#
發(fā)表于 2025-3-25 07:39:31 | 只看該作者
23#
發(fā)表于 2025-3-25 12:34:21 | 只看該作者
24#
發(fā)表于 2025-3-25 19:06:57 | 只看該作者
25#
發(fā)表于 2025-3-25 20:04:39 | 只看該作者
G. S. Gillgiven extremal . of a variational integral . is, in fact, a .. This will be achieved by a method the elements of which were developed by Weierstrass. One of its basic ideas is to consider a whole bundle of extremals instead of a single one, just as one investigates in optics . instead of isolated si
26#
發(fā)表于 2025-3-26 00:10:53 | 只看該作者
27#
發(fā)表于 2025-3-26 06:05:17 | 只看該作者
Purab Alok Jain,Pranali K. Kosamkars with the for- mal apparatus of the variational calculus and with nonparametric field theory, whereas Volume 2 treats parametric variational problems as weIl as Hamilton- Jacobi theory and the classical theory of partial differential equations of first order. In a subsequent treatise we shall descr
28#
發(fā)表于 2025-3-26 10:17:04 | 只看該作者
29#
發(fā)表于 2025-3-26 15:33:36 | 只看該作者
Swapnil P. Bhagat,Bandu B. Meshrams with the for- mal apparatus of the variational calculus and with nonparametric field theory, whereas Volume 2 treats parametric variational problems as weIl as Hamilton- Jacobi theory and the classical theory of partial differential equations of first order. In a subsequent treatise we shall descr
30#
發(fā)表于 2025-3-26 20:01:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 02:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德州市| 当雄县| 秭归县| 莱芜市| 达拉特旗| 永兴县| 枣庄市| 汕头市| 阿瓦提县| 绵阳市| 岳阳县| 化德县| 贵阳市| 博兴县| 屏东市| 天全县| 辽源市| 安西县| 南康市| 新平| 衡东县| 昌图县| 昌宁县| 东光县| 洪雅县| 西乡县| 分宜县| 册亨县| 八宿县| 黄大仙区| 大冶市| 夏河县| 通化市| 古交市| 永善县| 库尔勒市| 香港 | 丁青县| 崇礼县| 龙川县| 宜章县|