找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperspherical Harmonics Expansion Techniques; Application to Probl Tapan Kumar Das Book 2016 Springer Nature India Private Limited 2016 Bo

[復(fù)制鏈接]
樓主: grateful
21#
發(fā)表于 2025-3-25 03:26:50 | 只看該作者
Integro-Differential Equation,E is derived from PH expansion method. Hence, IDE and PHEM are equivalent. Still IDE has certain advantages: its structure and complexity do not increase with the number of particles. Also, since there is no sum over ., there is no problem of convergence. However, calculation of the kernel function
22#
發(fā)表于 2025-3-25 10:56:26 | 只看該作者
Computational Techniques, conditions at the origin and at infinity. Next solution of a system of coupled differential eigenvalue equations (CDEE) is discussed. First an exact numerical algorithm, viz., renormalized Numerov (RN) method is presented. Next approximation methods are discussed. Introduction of a hypercentral ave
23#
發(fā)表于 2025-3-25 13:08:57 | 只看該作者
24#
發(fā)表于 2025-3-25 19:03:27 | 只看該作者
25#
發(fā)表于 2025-3-25 22:45:21 | 只看該作者
Tapan Kumar DasPresents an ab initio quantum mechanical treatment of few-body systems like light nuclei, few-electron atoms, small molecules and clusters.Useful reference material for research workers starting from
26#
發(fā)表于 2025-3-26 02:02:11 | 只看該作者
Theoretical and Mathematical Physicshttp://image.papertrans.cn/h/image/430695.jpg
27#
發(fā)表于 2025-3-26 07:46:48 | 只看該作者
https://doi.org/10.1007/978-81-322-2361-0Bose-Einstein Condensates; Few-body Problems; Hyperspherical Harmonics; Trinucleon System; Trinucleon Sy
28#
發(fā)表于 2025-3-26 10:48:26 | 只看該作者
29#
發(fā)表于 2025-3-26 13:13:14 | 只看該作者
30#
發(fā)表于 2025-3-26 20:06:04 | 只看該作者
Systems of One or More Particles,r identical particles is discussed. In this connection, spin and isospin and wave functions involving them are introduced. Next many-body wave equation is written down and the need for approximations and models stressed. Mean-field approximation and independent particle model are introduced.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华宁县| 武功县| 天峨县| 高州市| 高淳县| 新晃| 双峰县| 江油市| 百色市| 通州市| 武城县| 湘潭县| 翁源县| 利川市| 嫩江县| 行唐县| 阜城县| 湾仔区| 油尖旺区| 莲花县| 桐乡市| 扎兰屯市| 开化县| 达州市| 沅陵县| 赣州市| 兴化市| 秀山| 卓尼县| 深州市| 门头沟区| 鄂托克前旗| 山阴县| 和田市| 宁波市| 沐川县| 通榆县| 富民县| 金溪县| 钦州市| 吉木萨尔县|