找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypernumbers and Extrafunctions; Extending the Classi Mark Burgin Book 2012 Mark Burgin 2012 differentiation.extrafuntion.hypernumber.integ

[復(fù)制鏈接]
樓主: thyroidectomy
11#
發(fā)表于 2025-3-23 11:42:40 | 只看該作者
12#
發(fā)表于 2025-3-23 14:12:17 | 只看該作者
13#
發(fā)表于 2025-3-23 20:34:01 | 只看該作者
14#
發(fā)表于 2025-3-24 01:31:30 | 只看該作者
Hypernumbers and Extrafunctions978-1-4419-9875-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
15#
發(fā)表于 2025-3-24 03:32:47 | 只看該作者
Hypernumbers,In this chapter we introduce real hypernumbers and study their properties in Sect. 2.1. Algebraic properties are explored in Sect. 2.2, and topological properties are investigated in Sect. 2.3. In a similar way, it is possible to build complex hypernumbers and study their properties (Burgin 2002, 2004, 2010).
16#
發(fā)表于 2025-3-24 09:50:25 | 只看該作者
Conclusion: New Opportunities,Many topics and results in the theory of hypernumbers and extrafunctions have been left beyond the scope of this little book as its goal is to give a succinct introduction into this rich and multilayered theory. Here we briefly describe some of these topics and results, articulating open problems and directions for further research.
17#
發(fā)表于 2025-3-24 10:51:19 | 只看該作者
Mark BurginDesigned to introduce the reader to hypernumbers and extrafunctions, which is another rigorous mathematical approach to operations with infinite values.Shows that even in the most standard case of rea
18#
發(fā)表于 2025-3-24 17:19:22 | 只看該作者
19#
發(fā)表于 2025-3-24 22:20:32 | 只看該作者
How to Differentiate Any Real Function,y of approximations are presented. We consider approximations of two types: approximations of a point by pairs of points, which are called A-approximations and used for differentiation, and approximations of topological spaces by their subspaces, which are called B-approximations and used for integration.
20#
發(fā)表于 2025-3-25 01:30:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安阳县| 武陟县| 枣强县| 沈阳市| 合水县| 康保县| 武夷山市| 卢湾区| 马龙县| 大渡口区| 临沂市| 肃北| 沂水县| 布尔津县| 莱西市| 拉孜县| 佳木斯市| 弥勒县| 湖口县| 镇远县| 右玉县| 全椒县| 苍山县| 温州市| 平江县| 道孚县| 斗六市| 灯塔市| 泰州市| 普兰店市| 睢宁县| 拜城县| 康乐县| 和田县| 泸西县| 许昌县| 定结县| 临安市| 奇台县| 栾川县| 宜阳县|