找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypergroups; Paul-Hermann Zieschang Book 2023 Springer Nature Switzerland AG 2023 20N20, 20A05, 05E30.51E24, 51E05, 51E15, 51F15, 20E42, 2

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 04:37:12 | 只看該作者
Paul-Hermann ZieschangThe text provides a direct path from elementary algebraic and combinatorial observations to research problems.The book is the first attempt to systematically develop a structure theory of hypergroups
22#
發(fā)表于 2025-3-25 10:16:30 | 只看該作者
23#
發(fā)表于 2025-3-25 12:47:43 | 只看該作者
24#
發(fā)表于 2025-3-25 17:20:47 | 只看該作者
Closed Subsets,Notice that a closed subset . of a hypergroup . is a hypergroup with respect to the hyperoperation which one obtains from the hyperoperation on . if one restricts the domain of the hyperoperation on . to . and the codomain of this hyperoperation to the power set of ..
25#
發(fā)表于 2025-3-25 21:25:16 | 只看該作者
26#
發(fā)表于 2025-3-26 01:00:09 | 只看該作者
Tight Hypergroups,in. This provides us with a useful invariant which can be associated to each finite tight hypergroups, its residual depth, and it is this invariant which determines our study of finite tight hypergroups.
27#
發(fā)表于 2025-3-26 07:20:30 | 只看該作者
Involutions,oretic involutions.1 So it should come as no surprise that involutions play a similarly important role in the theory of hypergroups as group theoretic involutions do in group theory.We will see this on several occasions throughout the rest of this monograph.
28#
發(fā)表于 2025-3-26 12:31:28 | 只看該作者
29#
發(fā)表于 2025-3-26 14:14:42 | 只看該作者
Coxeter Sets of Involutions,a hypergroup . which is generated by a Coxeter set . of involutions of . will be called a . .. If a hypergroup is generated by a Coxeter set of involutions and we do not specify this Coxeter set, we simply speak about a ..
30#
發(fā)表于 2025-3-26 20:17:25 | 只看該作者
https://doi.org/10.1007/978-3-031-39489-820N20, 20A05, 05E30; 51E24, 51E05, 51E15, 51F15, 20E42, 20F55, 20P99, 05Exx; hypergroup; association sc
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
聊城市| 五常市| 宝鸡市| 惠州市| 休宁县| 德州市| 南汇区| 罗江县| 西吉县| 依兰县| 万年县| 九龙坡区| 沙坪坝区| 福贡县| 苏尼特右旗| 雷波县| 云浮市| 五原县| 腾冲县| 永修县| 五华县| 贺兰县| 平度市| 遂川县| 会泽县| 和政县| 安泽县| 略阳县| 谷城县| 同心县| 丰镇市| 桐庐县| 彰化市| 山东省| 图木舒克市| 宝山区| 云龙县| 舟曲县| 刚察县| 梧州市| 新田县|