找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypergeometric Summation; An Algorithmic Appro Wolfram Koepf Textbook 2014Latest edition Springer-Verlag London 2014 Algorithmic Summation.

[復(fù)制鏈接]
樓主: 夾子
21#
發(fā)表于 2025-3-25 05:26:25 | 只看該作者
Hypergeometric Database,In this chapter we list some of the major hypergeometric identities. Note that most of these do not require any variables to have integer values. We give examples showing how this database can be used to generate binomial identities.
22#
發(fā)表于 2025-3-25 08:25:14 | 只看該作者
23#
發(fā)表于 2025-3-25 14:02:47 | 只看該作者
24#
發(fā)表于 2025-3-25 16:50:42 | 只看該作者
The Wilf-Zeilberger Method,In this chapter, we study the connection between Gosper’s algorithm and definite sums.Firstly, we give a direct application of Gosper’s algorithm to definite summation. The application of Gosper’s algorithm to a modified input can prove definite hypergeometric identities.
25#
發(fā)表于 2025-3-25 20:32:08 | 只看該作者
,Zeilberger’s Algorithm,In this chapter, we introduce Zeilberger’s extension of Gosper’s algorithm, using which one can not only prove hypergeometric identities but also sum definite series in many cases, if they represent hypergeometric terms.
26#
發(fā)表于 2025-3-26 00:49:12 | 只看該作者
Extensions of the Algorithms,In this chapter, we extend Gosper’s, Wilf-Zeilberger’s and Zeilberger’s methods to accept rational-linear inputs rather than only integer-linear ones. For such an input . is not always rational, so that Gosper’s algorithm may not apply.
27#
發(fā)表于 2025-3-26 05:50:19 | 只看該作者
28#
發(fā)表于 2025-3-26 09:25:14 | 只看該作者
Hyperexponential Antiderivatives,In this chapter, we consider a continuous counterpart of Gosper’s algorithm. The appropriate question is to find a hyperexponential term antiderivative .(.) of a given .(.) whenever one exists.
29#
發(fā)表于 2025-3-26 13:00:24 | 只看該作者
Holonomic Equations for Integrals,Now we are ready to consider . of hyperexponential terms. If the corresponding indefinite integral is a hyperexponential term again, then the continuous Gosper algorithm applies, and definite integration is trivial.
30#
發(fā)表于 2025-3-26 20:39:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玛曲县| 云林县| 保亭| 铅山县| 大石桥市| 宁河县| 固安县| 眉山市| 紫阳县| 泰来县| 乐业县| 云和县| 容城县| 吴堡县| 司法| 将乐县| 南皮县| 津市市| 门源| 唐河县| 康定县| 伊宁县| 孟津县| 百色市| 湖北省| 临湘市| 遵义市| 徐州市| 内江市| 绥江县| 马边| 嵩明县| 图木舒克市| 武功县| 西丰县| 松阳县| 溧阳市| 五峰| 新民市| 虹口区| 永泰县|