找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperfunctions and Harmonic Analysis on Symmetric Spaces; Henrik Schlichtkrull Book 1984 Birkh?user Boston, Inc. 1984 Microlocal analysis.

[復(fù)制鏈接]
樓主: Radiofrequency
11#
發(fā)表于 2025-3-23 11:57:33 | 只看該作者
12#
發(fā)表于 2025-3-23 14:33:00 | 只看該作者
Boundary values on the full boundary,G/K has rank < 1 this is, however, only a small part of the boundary of G/K in X?, and it is important to have analogous results for the other G-orbits in the boundary. In this chapter we therefore generalize the results of Chapter 5 to this situation.
13#
發(fā)表于 2025-3-23 18:32:23 | 只看該作者
Construction of functions with integrable square,nique up to scalars. Hence the Hilbert space L. (G/H) makes sense, and we can study the unitary representation . (g,x . G) of G on this space. It is the purpose of L.-harmonic analysis on G/H to give an explicit decomposition (in general as a direct integral) of this representation into irreducibles
14#
發(fā)表于 2025-3-23 22:10:59 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/h/image/430632.jpg
15#
發(fā)表于 2025-3-24 03:06:04 | 只看該作者
16#
發(fā)表于 2025-3-24 09:41:57 | 只看該作者
17#
發(fā)表于 2025-3-24 14:03:09 | 只看該作者
18#
發(fā)表于 2025-3-24 18:29:05 | 只看該作者
19#
發(fā)表于 2025-3-24 21:55:48 | 只看該作者
A compact imbedding,Let X be a Riemannian symmetric space. It is the purpose of this chapter to construct an imbedding of X into a compact real analytic manifold X?. For the study of the asymptotic behavior of functions on X, which we shall carry out in the next chapters, this is of crucial importance.
20#
發(fā)表于 2025-3-25 02:41:01 | 只看該作者
Boundary values and Poisson integral representations,Consider the open disk D = {|z| > 1} in . with the boundary T = {|z| = 1}. The classical Poisson kernel is defined by . for z . D , t . T , and the Poisson transform .f on D of a function f on T is given by
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沙田区| 汝城县| 石景山区| 邛崃市| 曲松县| 沛县| 连山| 金坛市| 邵武市| 吴川市| 丘北县| 平凉市| 南皮县| 汉沽区| 闽清县| 海阳市| 吉水县| 东明县| 昆山市| 合阳县| 柳江县| 昭觉县| 大足县| 襄汾县| 罗城| 阿拉尔市| 万荣县| 斗六市| 榕江县| 汉川市| 锡林浩特市| 苏尼特右旗| 孟州市| 建平县| 甘泉县| 高淳县| 九龙城区| 抚州市| 筠连县| 荆州市| 晋城|