找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypercomplex Analysis: New Perspectives and Applications; Swanhild Bernstein,Uwe K?hler,Frank Sommen Conference proceedings 2014 Springer

[復制鏈接]
樓主: commingle
31#
發(fā)表于 2025-3-27 00:11:21 | 只看該作者
32#
發(fā)表于 2025-3-27 04:13:43 | 只看該作者
Uwe K?hler,Nelson Vieira Radiologists and medical practitioners mostly depended on the analysis of PD patients’ magnetic resonance images (MRIs) to identify this disease. Due to presence of grayscale features and uncertain inherited information in MRIs, their pattern recognition and visualization were very complex. With th
33#
發(fā)表于 2025-3-27 06:03:56 | 只看該作者
34#
發(fā)表于 2025-3-27 09:48:21 | 只看該作者
Daniele C. Struppa,Adrian Vajiac,Mihaela B. Vajiacckles the challenging task of segmenting biological and medical images. The problem of partitioning multidimensional biomedical data into meaningful regions is perhaps the main roadblock in the automation of biomedical image analysis. Whether the modality of choice is MRI, PET, ultrasound, SPECT, CT
35#
發(fā)表于 2025-3-27 14:07:29 | 只看該作者
36#
發(fā)表于 2025-3-27 18:17:52 | 只看該作者
37#
發(fā)表于 2025-3-28 00:25:18 | 只看該作者
Multi M,-monogenic Function in Different Dimension,y–Riemann operator and λ can be real or Cliffordvalued constant (see [4]). Using this definition we can say that a multimetamonogenic function . is separately metamonogenic in several variables . runs in the Euclidean space . where D. is the corresponding Cauchy–Riemann operator in the space . Using
38#
發(fā)表于 2025-3-28 04:02:27 | 只看該作者
The Fractional Monogenic Signal,meters to characterize a signal. In this paper we study two generalizations in ?.. Firstly, the fractional Riesz transform and secondly the fractional monogenic signal. The Riesz transform is a generalization of the Hilbert transform and builds up the monogenic signal of a scalar-valued function ..
39#
發(fā)表于 2025-3-28 08:12:50 | 只看該作者
40#
發(fā)表于 2025-3-28 11:19:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
固安县| 宜君县| 渭源县| 旅游| 临泽县| 津南区| 梅州市| 陆河县| 崇信县| 建阳市| 乌什县| 当阳市| 赞皇县| 株洲县| 齐齐哈尔市| 东宁县| 宝山区| 禹城市| 外汇| 宝应县| 商河县| 黄大仙区| 西林县| 晴隆县| 五台县| 丹阳市| 大田县| 平远县| 万安县| 当涂县| 宁国市| 正宁县| 平武县| 冕宁县| 哈密市| 高平市| 连云港市| 磴口县| 新巴尔虎右旗| 博兴县| 浦东新区|