找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperbolic Systems with Analytic Coefficients; Well-posedness of th Tatsuo Nishitani Book 2014 Springer International Publishing Switzerlan

[復(fù)制鏈接]
樓主: hector
21#
發(fā)表于 2025-3-25 05:50:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:55:34 | 只看該作者
https://doi.org/10.1007/978-3-319-02273-435L45,35L40,35L55; Cauchy problem; Hyperbolic systems; Real analytic coefficients; Strongly hyperbolic; W
23#
發(fā)表于 2025-3-25 14:01:41 | 只看該作者
Tatsuo NishitaniIncludes supplementary material:
24#
發(fā)表于 2025-3-25 16:58:27 | 只看該作者
25#
發(fā)表于 2025-3-25 22:15:04 | 只看該作者
26#
發(fā)表于 2025-3-26 03:27:37 | 只看該作者
Two by Two Systems with Two Independent Variables,his necessary and sufficient condition we provide many instructive examples. For instance, we see that there are examples which are strictly hyperbolic apart from the initial line with polynomial coefficients such that the Cauchy problem is not . . well posed for any lower order term.
27#
發(fā)表于 2025-3-26 07:33:16 | 只看該作者
Systems with Nondegenerate Characteristics,then there exists a smooth symmetrizer and hence the Cauchy problem for . is . . well posed for any lower order term. Finally we discuss about the stability of symmetric systems in the space of hyperbolic systems.
28#
發(fā)表于 2025-3-26 12:10:24 | 只看該作者
29#
發(fā)表于 2025-3-26 14:40:06 | 只看該作者
0075-8434 ix coefficients. Mainly two questions are discussed:.(A) Under which conditions on lower order terms is the Cauchy problem well posed?.(B) When is the Cauchy problem well posed for any lower order term?.For first order two by two systems with two independent variables with real analytic coefficients
30#
發(fā)表于 2025-3-26 18:11:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 05:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桂东县| 江北区| 江永县| 庆阳市| 阳谷县| 巴里| 永清县| 罗城| 新民市| 和政县| 黎川县| 牙克石市| 岳普湖县| 马边| 福清市| 海城市| 华阴市| 安龙县| 昆山市| 阿坝县| 广灵县| 建平县| 绿春县| 涿鹿县| 绍兴县| 平潭县| 姜堰市| 中卫市| 临城县| 石棉县| 祁东县| 乌兰浩特市| 宝应县| 普安县| 阳新县| 隆林| 会同县| 日喀则市| 电白县| 睢宁县| 平陆县|