找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperbolic Problems: Theory, Numerics, Applications; Eighth International Heinrich Freistühler,Gerald Warnecke Conference proceedings 2001

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 22:42:36 | 只看該作者
On the Convergence Rate of Operator Splitting for Weakly Coupled Systems of Hamilton-Jacobi Equatioton-Jacobi equations, we establish a linear.convergence rate for a semi-discrete operator splitting. This paper complements our previous work [3] on the convergence rate of operator splitting for scalar Hamilton-Jacobi equations with source term.
32#
發(fā)表于 2025-3-27 02:58:15 | 只看該作者
33#
發(fā)表于 2025-3-27 06:23:41 | 只看該作者
34#
發(fā)表于 2025-3-27 09:51:42 | 只看該作者
35#
發(fā)表于 2025-3-27 15:48:11 | 只看該作者
36#
發(fā)表于 2025-3-27 19:33:43 | 只看該作者
37#
發(fā)表于 2025-3-27 23:55:03 | 只看該作者
38#
發(fā)表于 2025-3-28 05:09:27 | 只看該作者
Proving Existence of Nonlinear Differential Equations Using Numerical Approximations,ution of a near-by problem. The aim is to show existence of stationary viscous shock-wave solutions of hyperbolic conservation laws. The technique is applied to viscous Burgers’ equation. Equations for the difference between the exact and the approximate solution are constructed. Sufficient conditio
39#
發(fā)表于 2025-3-28 09:03:15 | 只看該作者
40#
發(fā)表于 2025-3-28 13:33:50 | 只看該作者
A Wave Propagation Algorithm for the Solution of PDEs on the Surface of a Sphere,nite volume method using gnomonic grid mappings to solve equations relevant to geophysical fluid dynamics. The method is a generalization of the wave propagation algorithm of CLAWPACK for domains which lie on curved manifolds. We show that in this finite volume context it becomes possible to regular
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乃东县| 新河县| 宁陕县| 盖州市| 桦南县| 崇州市| 弋阳县| 鲁甸县| 光山县| 区。| 武定县| 济阳县| 景泰县| 平塘县| 渭南市| 瑞丽市| 连平县| 平陆县| 南投县| 洪湖市| 孝义市| 砚山县| 印江| 兴山县| 绵阳市| 沁水县| 南岸区| 新干县| 榕江县| 南和县| 大同县| 临泉县| 桐城市| 华安县| 四子王旗| 平舆县| 阿克陶县| 宁波市| 重庆市| 开平市| 怀仁县|