找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hydrogen Technologies; Reimund Neugebauer Book 2023 Springer Nature Switzerland AG 2023 Renewable energies.Energy storage.Industrial produ

[復(fù)制鏈接]
樓主: 類屬
11#
發(fā)表于 2025-3-23 13:19:01 | 只看該作者
Reimund Neugebaueret captures nonlinear effects of multi-omics data to survival outcomes via a neural network framework, while allowing one to biologically interpret the model. In the extensive experiments with multi-omics data of Gliblastoma multiforme (GBM) patients, MiNet outperformed the current cutting-edge meth
12#
發(fā)表于 2025-3-23 13:55:02 | 只看該作者
Simon Harst,Bernhard A?mus,Angelika Hackner,Anja Haslingeris used to calculate the relational initial scores for new drugs. To systematically evaluate the prediction performance of IDNDDI and compare it with other prediction methods, we conduct the 5-fold cross validation and de novo drug validation. In terms of the AUC (area under the ROC curve)value, IDN
13#
發(fā)表于 2025-3-23 19:14:19 | 只看該作者
Martin Wietschel,Elisabeth Dütschke,Marius Neuwirth,Aline Scherrer,Lin Zheng,Norman Gerhardt,Sebastial information. Also, the partner antigen is vital for paratope prediction, and we employ Att-BLSTM on the partner antigen sequence as well. The outputs of CNNs and Att-BLSTM networks are combined to predict antibody paratope by fully-connected networks. The experiments show that our proposed method
14#
發(fā)表于 2025-3-24 01:29:36 | 只看該作者
Jochen Bard,Norman Gerhardt,Marie Plaisir,Ramona Schr?er,Anne Held,Hans-Martin Henning,Christoph Koso-layer RGCN to predict microbe-disease associations. Compared with other methods, TNRGCN achieves a good performance in cross validation. Meanwhile, case studies for diseases demonstrate TNRGCN has a good performance for predicting potential microbe-disease associations.
15#
發(fā)表于 2025-3-24 05:51:18 | 只看該作者
16#
發(fā)表于 2025-3-24 10:15:58 | 只看該作者
Ulf Groos,Malte Semmel,Achim Schaadt,Stefan Bürger,Felix Horch,Johannes Geiling,Richard ?chsner,Gunt.We conducted a series of simulation experiments to assess the performance of . and compared it against previously existing probabilistic methods (.) and parsimonious methods (.). As we learned from the results, . can reconstruct more correct ancestral adjacencies and yet run several orders of magni
17#
發(fā)表于 2025-3-24 12:27:40 | 只看該作者
18#
發(fā)表于 2025-3-24 18:47:17 | 只看該作者
Ulrike Herrmann,Natalia Pieton,Benjamin Pfluger,Katharina Alms,Tanja Manuela Kneiske,Christopher VogrRWMDE, takes several steps of random walking on three different biological networks, microRNA-microRNA functional similarity network(MFN), disease-disease similarity network(DSN) and environmental factor similarity network(ESN) respectively so as to get microRNA-disease association information from
19#
發(fā)表于 2025-3-24 21:25:57 | 只看該作者
Sebastian Metz,Tom Smolinka,Christian I. Bern?cker,Stefan Loos,Thomas Rauscher,Lars R?ntzsch,Michaeleins. It is the same way with S-PIN and NF-APIN. NF-APIN is a dynamic PIN constructed by using gene expression data and S-PIN. The experimental results on the protein interaction network of S.cerevisiae shows that all the six network-based methods achieve better results when being applied on TS-PIN
20#
發(fā)表于 2025-3-25 01:15:41 | 只看該作者
Ulf Groos,Carsten Cremers,Laura Nousch,Christoph Baumg?rtnere true biological mutations. HapIso uses a k-means clustering algorithm aiming to group the reads into two meaningful clusters maximizing the similarity of the reads within cluster and minimizing the similarity of the reads from different clusters. Each cluster corresponds to a parental haplotype. W
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沁源县| 道孚县| 襄城县| 团风县| 玉环县| 遵义县| 思茅市| 页游| 金华市| 建德市| 西藏| 重庆市| 融水| 云林县| 平舆县| 上思县| 万年县| 敦化市| 万全县| 金堂县| 井陉县| 长武县| 永嘉县| 皋兰县| 北票市| 温宿县| 响水县| 酉阳| 长泰县| 新绛县| 博爱县| 改则县| 广灵县| 德庆县| 昌平区| 泉州市| 大渡口区| 喀喇沁旗| 随州市| 哈巴河县| 大足县|