找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hybrid Soft Computing Models Applied to Graph Theory; Muhammad Akram,Fariha Zafar Book 2020 Springer Nature Switzerland AG 2020 Upper Appr

[復(fù)制鏈接]
樓主: Stubborn
11#
發(fā)表于 2025-3-23 13:32:47 | 只看該作者
12#
發(fā)表于 2025-3-23 17:31:21 | 只看該作者
Bipolar Fuzzy Soft Graphs,phs. We present certain notions of bipolar fuzzy soft graphs. We investigate some of their properties. We discuss several applications of the bipolar fuzzy soft graphs in multiple criteria decision-making problems. We also develop algorithms in each multiple criteria decision-making problem. This ch
13#
發(fā)表于 2025-3-23 20:16:06 | 只看該作者
Soft Rough Neutrosophic Influence Graphs,ft rough neutrosophic influence graphs, soft rough neutrosophic influence cycles and soft rough neutrosophic influence trees. We illustrate these concepts with examples, and investigate some of their properties. We solve a decision-making problem by using our proposed algorithm. This chapter is base
14#
發(fā)表于 2025-3-24 00:42:26 | 只看該作者
15#
發(fā)表于 2025-3-24 06:26:10 | 只看該作者
16#
發(fā)表于 2025-3-24 07:16:33 | 只看該作者
17#
發(fā)表于 2025-3-24 14:41:47 | 只看該作者
Muhammad Akram,Fariha ZafarExplains how construct and use rough fuzzy digraphs.Describes applications to different sets of data and complex problems.Describes relevant extensions, such as soft rough neutrosophic graphs
18#
發(fā)表于 2025-3-24 17:52:24 | 只看該作者
19#
發(fā)表于 2025-3-24 22:55:55 | 只看該作者
Bipolar Fuzzy Soft Graphs,phs. We present certain notions of bipolar fuzzy soft graphs. We investigate some of their properties. We discuss several applications of the bipolar fuzzy soft graphs in multiple criteria decision-making problems. We also develop algorithms in each multiple criteria decision-making problem. This chapter is based on [18].
20#
發(fā)表于 2025-3-25 01:06:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
夏津县| 佛教| 本溪市| 柳江县| 盐边县| 永济市| 平果县| 临武县| 翁牛特旗| 镇巴县| 龙川县| 双辽市| 榆中县| 澄迈县| 苏尼特右旗| 黎平县| 浑源县| 峨眉山市| 屏边| 梅州市| 雅江县| 金溪县| 当阳市| 安庆市| 陆良县| 米泉市| 界首市| 垣曲县| 临泉县| 库车县| 五峰| 当阳市| 博湖县| 同心县| 宕昌县| 抚远县| 马龙县| 达尔| 广宁县| 宁武县| 襄垣县|