找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hybrid PET/MR Neuroimaging; A Comprehensive Appr Ana M. Franceschi,Dinko Franceschi Book 2022 The Editor(s) (if applicable) and The Author(

[復制鏈接]
查看: 30893|回復: 58
樓主
發(fā)表于 2025-3-21 18:33:02 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Hybrid PET/MR Neuroimaging
副標題A Comprehensive Appr
編輯Ana M. Franceschi,Dinko Franceschi
視頻videohttp://file.papertrans.cn/431/430154/430154.mp4
概述Offers a thorough and concise introduction to PET/MR neuroimaging.Chapters include different disease processes, systems, as well as future research directions.Written by experts in the fields of neuro
圖書封面Titlebook: Hybrid PET/MR Neuroimaging; A Comprehensive Appr Ana M. Franceschi,Dinko Franceschi Book 2022 The Editor(s) (if applicable) and The Author(
描述.This book serves as a reference and comprehensive guide for PET/MR neuroimaging. The field of PET/MR is rapidly evolving, however, there is no standard resource summarizing the vast information and its potential applications. This book will guide neurological molecular imaging applications in both clinical practice and the research setting.?..Experts from multiple disciplines, including radiologists, researchers, and physicists, have collaborated to bring their knowledge and expertise together. Sections begin by covering general considerations, including public health and economic implications, the physics of PET/MR systems, an overview of hot lab and cyclotron, and radiotracers used in neurologic PET/MRI. There is then coverage of each major disease/systemic category, including dementia and neurodegenerative disease, epilepsy localization, brain tumors, inflammatory and infectious CNS disorders, head and neck imaging, as well as vascular hybrid imaging. Together, we have created a thorough, concise and up-to-date textbook in a unique, user-friendly format.?This is an ideal guide for neuroradiologists, nuclear medicine specialists, medical physicists, clinical trainees and researc
出版日期Book 2022
關鍵詞PET/MRI; PET/MR; Neuroimaging; hybrid imaging; neuroradiology; radiotracers; dementia; epilepsy
版次1
doihttps://doi.org/10.1007/978-3-030-82367-2
isbn_softcover978-3-030-82369-6
isbn_ebook978-3-030-82367-2
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Hybrid PET/MR Neuroimaging影響因子(影響力)




書目名稱Hybrid PET/MR Neuroimaging影響因子(影響力)學科排名




書目名稱Hybrid PET/MR Neuroimaging網絡公開度




書目名稱Hybrid PET/MR Neuroimaging網絡公開度學科排名




書目名稱Hybrid PET/MR Neuroimaging被引頻次




書目名稱Hybrid PET/MR Neuroimaging被引頻次學科排名




書目名稱Hybrid PET/MR Neuroimaging年度引用




書目名稱Hybrid PET/MR Neuroimaging年度引用學科排名




書目名稱Hybrid PET/MR Neuroimaging讀者反饋




書目名稱Hybrid PET/MR Neuroimaging讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:11:56 | 只看該作者
rk, we assess domain transfer of mitotic figure recognition using domain adversarial training on four data sets, two from dogs and two from humans. We were able to show that domain adversarial training considerably improves accuracy when applying mitotic _gure classification learned from the canine
板凳
發(fā)表于 2025-3-22 04:20:06 | 只看該作者
Paul Vaska,Lemise Salehr study with 19 volunteers each performing 40 trials of five different visualizations. Our results indicate that two of the five visualizations (. and .) are able to reduce the occurrent error, making training in Virtual Reality more suitable for minimally invasive surgery.
地板
發(fā)表于 2025-3-22 06:14:20 | 只看該作者
5#
發(fā)表于 2025-3-22 10:35:02 | 只看該作者
Mario Serrano-Sosa,Ana M. Franceschi,Chuan Huang. It extends the As-Rigid- As-Possible (ARAP) deformation algorithm by a smart initialization of the required 3D readout mesh which is fitted to the CoW. Depending on the resulting degree of distortion, it is also possible to merge neighboring arteries directly into the same view. In cases of high d
6#
發(fā)表于 2025-3-22 13:07:02 | 只看該作者
Mario Serrano-Sosa,Chuan Huangtages and drawbacks of the two identified model categories in the context of AVI’s inherent requirements. Last, we outline open research questions, such as the need for an improved detection performance of semantic anomalies, and propose potential ways to address them.
7#
發(fā)表于 2025-3-22 20:45:04 | 只看該作者
8#
發(fā)表于 2025-3-23 00:12:11 | 只看該作者
Maria Rosana Ponisio,Pooya Iranpour,Tammie L. S. Benzingercher Gesellschaften: Deutsche Gesellschaft für angewandte Optik (DGaO), Deutsche Gesellschaft für Ortung und Navigation (DGON), Deutsche Gesellschaft für Medizinische Dokumentation, Information und Statistik (GMDS), Deutsche Gesellschaft für Angewandte Datenverarbeitung und Automation in der Medizin
9#
發(fā)表于 2025-3-23 03:15:32 | 只看該作者
Maria Rosana Ponisio,Pooya Iranpour,Tammie L. S. Benzingerft nicht ganz korrekte Formulierungen verwendet. So ist die Aussage: ?Lineare Filter werden durch eine Faltung beschrieben“ falsch. Die Faltung ist eine lineare Operation, aber zus?tzlich noch verschiebungsinvariant. Daher ist richtig: die Faltung beschreibt ein lineares Filter, aber nicht jdes line
10#
發(fā)表于 2025-3-23 08:59:37 | 只看該作者
Maria Rosana Ponisio,Pooya Iranpour,Tammie L. S. Benzingerr, aber dennoch visuell homogen. Hauptziele in der Bildverabeitung von Texturen sind:Umgangssprachlich ordnet man Texturen Eigenschaften zu wie: k?rnig, glatt, l?nglich, fein usw. Mit diesen Eigenschaften k?nnen wir aber algorithmisch nichts anfangen. Zur Texturbeschreibung gibt es im Wesentlichen d
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-17 02:48
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
贵德县| 廊坊市| 讷河市| 承德县| 德阳市| 广水市| 灵宝市| 平果县| 天柱县| 长白| 谢通门县| 上栗县| 哈尔滨市| 浮梁县| 平陆县| 报价| 平乐县| 繁昌县| 都安| 衡阳县| 宜州市| 佳木斯市| 嘉黎县| 常宁市| 静宁县| 南充市| 和龙市| 神池县| 神农架林区| 平遥县| 海南省| 堆龙德庆县| 溧水县| 淮北市| 伊川县| 喀什市| 沁源县| 石台县| 登封市| 边坝县| 甘肃省|