找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: How We Understand Mathematics; Conceptual Integrati Jacek Wo?ny Book 2018 Springer International Publishing AG, part of Springer Nature 201

[復制鏈接]
樓主: ACE313
31#
發(fā)表于 2025-3-27 00:32:50 | 只看該作者
32#
發(fā)表于 2025-3-27 04:17:52 | 只看該作者
33#
發(fā)表于 2025-3-27 07:47:31 | 只看該作者
Jacek Wo?nytural deregulation, prudential reregulation, internationalization, and changes in corporate behavior, such as growing disintermediation and increased emphasis on shareholder value (Berger et al., 2010). The global financial crisis of 2008–09 also accentuated these pressures and illustrated that bank
34#
發(fā)表于 2025-3-27 10:07:45 | 只看該作者
35#
發(fā)表于 2025-3-27 14:19:01 | 只看該作者
36#
發(fā)表于 2025-3-27 21:24:14 | 只看該作者
Sets, concepts of subsets, equality of sets, the null set, the union, and intersection of sets. In the final section, we will take a closer look at the language of mathematical proof. At every stage of our close reading of the mathematical narrative, we will be looking for the mental patterns like image
37#
發(fā)表于 2025-3-27 22:05:29 | 只看該作者
38#
發(fā)表于 2025-3-28 04:50:32 | 只看該作者
Groups, blending. This time we will focus on the narrative of the group theory considered to be one of the most beautiful areas of algebra (especially for the finite groups). This is how the chapter on group theory begins in Herstein’s handbook:
39#
發(fā)表于 2025-3-28 07:07:51 | 只看該作者
40#
發(fā)表于 2025-3-28 11:03:00 | 只看該作者
Killing 2-Forms in Dimension 4, of Calabi type, or, generically, . gives rise to an ambitoric structure of hyperbolic type, in particular depends locally on two functions of one variable. Compact examples of either types are provided.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
讷河市| 浠水县| 平泉县| 孟连| 三江| 白沙| 鸡东县| 加查县| 江油市| 满城县| 潼关县| 界首市| 禄劝| 古丈县| 外汇| 都昌县| 包头市| 黄龙县| 鄂尔多斯市| 义乌市| 福州市| 名山县| 元江| 专栏| 台湾省| 繁昌县| 台东市| 丽水市| 安顺市| 和田市| 新沂市| 当阳市| 北海市| 中江县| 永福县| 夏河县| 昌黎县| 拜泉县| 宁安市| 阜平县| 禄丰县|