找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: How Many Zeroes?; Counting Solutions o Pinaki Mondal Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license

[復制鏈接]
樓主: MOURN
41#
發(fā)表于 2025-3-28 17:22:25 | 只看該作者
Pinaki Mondalthe subjects of intense study by geneticists because their distinct functions are associated with specific nonoverlapping domains within the molecule. Experimenters can use site-specific mutagenesis to eliminate only one function while preserving others. Examples of genes kept nonfunctional by inser
42#
發(fā)表于 2025-3-28 19:23:51 | 只看該作者
the subjects of intense study by geneticists because their distinct functions are associated with specific nonoverlapping domains within the molecule. Experimenters can use site-specific mutagenesis to eliminate only one function while preserving others. Examples of genes kept nonfunctional by inser
43#
發(fā)表于 2025-3-28 22:57:04 | 只看該作者
https://doi.org/10.1007/978-3-030-75174-6Number of solutions/zeros of systems of polynomials; affine Bezout problem; Bezout‘s theorem; Bernstein
44#
發(fā)表于 2025-3-29 06:51:44 | 只看該作者
45#
發(fā)表于 2025-3-29 10:29:00 | 只看該作者
Convex polyhedrans . and . we prove the equivalence of these definitions after introducing the basic terminology. The rest of the chapter is devoted to different properties of polytopes which are implicitly or explicitly used in the forthcoming chapters.
46#
發(fā)表于 2025-3-29 14:20:46 | 只看該作者
Toric varieties over algebraically closed fieldsapters . and .; only in section . we use the notion of . discussed in section .. Unless explicitly stated otherwise, from this chapter onward . denotes an algebraically closed field (of arbitrary characteristic), and . denotes ..
47#
發(fā)表于 2025-3-29 17:30:40 | 只看該作者
48#
發(fā)表于 2025-3-29 22:46:50 | 只看該作者
Introduction,This book is about the problem of computing the number of solutions of systems of polynomials, or equivalently, the number of points of intersection of the sets of zeroes of polynomials. In this section we formulate the precise version of the problem we are going to study and give an informal description of the results.
49#
發(fā)表于 2025-3-30 00:17:12 | 只看該作者
A brief history of points at infinity in geometry,In this chapter we give a brief historical overview of the concept of points at infinity in geometry and the subsequent introduction of homogeneous coordinates on projective spaces.
50#
發(fā)表于 2025-3-30 06:23:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
金门县| 二连浩特市| 甘泉县| 鹤庆县| 简阳市| 许昌市| 屯昌县| 辽源市| 泸水县| 望江县| 边坝县| 新巴尔虎左旗| 罗定市| 静乐县| 徐闻县| 肥乡县| 会宁县| 东阳市| 岐山县| 大兴区| 昌邑市| 达日县| 临漳县| 临江市| 陆丰市| 湛江市| 宝鸡市| 六枝特区| 突泉县| 乐安县| 荆门市| 会东县| 米泉市| 镶黄旗| 若羌县| 金秀| 巴里| 丰都县| 修文县| 云阳县| 湘潭县|