找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: How Many Zeroes?; Counting Solutions o Pinaki Mondal Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license

[復(fù)制鏈接]
樓主: MOURN
41#
發(fā)表于 2025-3-28 17:22:25 | 只看該作者
Pinaki Mondalthe subjects of intense study by geneticists because their distinct functions are associated with specific nonoverlapping domains within the molecule. Experimenters can use site-specific mutagenesis to eliminate only one function while preserving others. Examples of genes kept nonfunctional by inser
42#
發(fā)表于 2025-3-28 19:23:51 | 只看該作者
the subjects of intense study by geneticists because their distinct functions are associated with specific nonoverlapping domains within the molecule. Experimenters can use site-specific mutagenesis to eliminate only one function while preserving others. Examples of genes kept nonfunctional by inser
43#
發(fā)表于 2025-3-28 22:57:04 | 只看該作者
https://doi.org/10.1007/978-3-030-75174-6Number of solutions/zeros of systems of polynomials; affine Bezout problem; Bezout‘s theorem; Bernstein
44#
發(fā)表于 2025-3-29 06:51:44 | 只看該作者
45#
發(fā)表于 2025-3-29 10:29:00 | 只看該作者
Convex polyhedrans . and . we prove the equivalence of these definitions after introducing the basic terminology. The rest of the chapter is devoted to different properties of polytopes which are implicitly or explicitly used in the forthcoming chapters.
46#
發(fā)表于 2025-3-29 14:20:46 | 只看該作者
Toric varieties over algebraically closed fieldsapters . and .; only in section . we use the notion of . discussed in section .. Unless explicitly stated otherwise, from this chapter onward . denotes an algebraically closed field (of arbitrary characteristic), and . denotes ..
47#
發(fā)表于 2025-3-29 17:30:40 | 只看該作者
48#
發(fā)表于 2025-3-29 22:46:50 | 只看該作者
Introduction,This book is about the problem of computing the number of solutions of systems of polynomials, or equivalently, the number of points of intersection of the sets of zeroes of polynomials. In this section we formulate the precise version of the problem we are going to study and give an informal description of the results.
49#
發(fā)表于 2025-3-30 00:17:12 | 只看該作者
A brief history of points at infinity in geometry,In this chapter we give a brief historical overview of the concept of points at infinity in geometry and the subsequent introduction of homogeneous coordinates on projective spaces.
50#
發(fā)表于 2025-3-30 06:23:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 15:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉溪市| 谷城县| 千阳县| 青海省| 岳池县| 商水县| 高淳县| 阳城县| 宁都县| 木兰县| 绥阳县| 宜昌市| 全椒县| 彩票| 成都市| 罗定市| 太康县| 伽师县| 平昌县| 清徐县| 梁河县| 怀化市| 浮山县| 安岳县| 邮箱| 江西省| 会宁县| 锦屏县| 金华市| 红原县| 子长县| 苏尼特右旗| 梓潼县| 崇明县| 乃东县| 绥芬河市| 兰州市| 伽师县| 唐海县| 资溪县| 宁南县|