找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hopf Algebras and Their Generalizations from a Category Theoretical Point of View; Gabriella B?hm Book 2018 Springer Nature Switzerland AG

[復(fù)制鏈接]
樓主: 譴責(zé)
21#
發(fā)表于 2025-3-25 06:45:48 | 只看該作者
22#
發(fā)表于 2025-3-25 09:06:39 | 只看該作者
(Hopf) Bialgebroids,eplaced by the category of bimodules over some algebra .; or, isomorphically, the category of left modules over .???... Those endofunctors on it are considered which are induced, as in Example . 4, by the .???..-module tensor product with a fixed .???..-bimodule .. The monad structures on this funct
23#
發(fā)表于 2025-3-25 14:58:04 | 只看該作者
24#
發(fā)表于 2025-3-25 19:32:34 | 只看該作者
(Hopf) Bimonoids in Duoidal Categories, the morphisms in the category and all natural transformations between the induced functors. Those monads are identified which correspond to monoids; and those opmonoidal functors are identified which correspond to comonoids. This leads to an equivalence between bimonoids in a duoidal category and b
25#
發(fā)表于 2025-3-25 23:39:53 | 只看該作者
26#
發(fā)表于 2025-3-26 00:14:22 | 只看該作者
27#
發(fā)表于 2025-3-26 06:34:45 | 只看該作者
(Hopf) Bialgebras,. This results in a bijection between the bialgebras; and the induced bimonads on the category of vector spaces. The bijection is shown to restrict to Hopf algebras on one hand; and Hopf monads on the other hand.
28#
發(fā)表于 2025-3-26 10:46:02 | 只看該作者
29#
發(fā)表于 2025-3-26 16:31:12 | 只看該作者
Introduction,eneralizations of Hopf algebra as Hopf monad structures on suitable functors. The covered examples include classical Hopf algebras, Hopf monoids in duoidal (in particular braided monoidal) categories, Hopf algebroids and (in particular) weak Hopf algebras.
30#
發(fā)表于 2025-3-26 20:43:00 | 只看該作者
(Hopf) Bimonads,ient and necessary condition is obtained for the lifting of the closed structure as well, in the form of the invertibility of a canonical natural transformation. A Hopf monad is defined as a bimonad for which this natural transformation is invertible.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 08:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马公市| 襄樊市| 博客| 和龙市| 黄大仙区| 喀喇| 曲麻莱县| 沈阳市| 崇礼县| 洞口县| 商河县| 东乌| 宣武区| 奉新县| 乌鲁木齐市| 武川县| 东兰县| 吉木乃县| 海南省| 绿春县| 南部县| 吉木乃县| 繁峙县| 长垣县| 云南省| 北川| 延庆县| 闵行区| 琼海市| 兴业县| 盐亭县| 屯昌县| 青阳县| 明水县| 伊吾县| 安多县| 杂多县| 河西区| 澄江县| 日土县| 鹤山市|