找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Homotopy Analysis Method in Nonlinear Differential Equations; Shijun Liao Book 2012 Higher Education Press,Beijng and Springer-Verlag GmbH

[復(fù)制鏈接]
樓主: CULT
41#
發(fā)表于 2025-3-28 14:59:41 | 只看該作者
42#
發(fā)表于 2025-3-28 19:12:59 | 只看該作者
43#
發(fā)表于 2025-3-28 23:55:39 | 只看該作者
44#
發(fā)表于 2025-3-29 04:38:36 | 只看該作者
Basic Ideas of the Homotopy Analysis Method the concept of the homotopy, the flexibility of constructing equations for continuous variations, the way to guarantee convergence of solution series, the essence of the convergence-control parameter .., the methods to accelerate convergence, and so on. The corresponding Mathematica codes are given
45#
發(fā)表于 2025-3-29 07:15:58 | 只看該作者
Optimal Homotopy Analysis Method, which logically contains the basic optimal HAM with only one convergence-control parameter and also the optimal HAM with an infinite number of parameters. It is found that approximations given by the optimal HAMs converge fast in general. Especially, the basic optimal HAM mostly gives good enough
46#
發(fā)表于 2025-3-29 12:12:56 | 只看該作者
Systematic Descriptions and Related Theoremshomotopy-derivative operator and deformation equations are proved, which are helpful to gain high-order approximations. Some theorems of convergence are proved, and the methods to control and accelerate convergence are generally described. A few of open questions are discussed.
47#
發(fā)表于 2025-3-29 18:51:36 | 只看該作者
48#
發(fā)表于 2025-3-29 21:50:31 | 只看該作者
49#
發(fā)表于 2025-3-30 00:08:43 | 只看該作者
50#
發(fā)表于 2025-3-30 04:43:36 | 只看該作者
Nonlinear Boundary-value Problems with Multiple Solutionsthematica package BVPh (version 1.0) for .th-order nonlinear boundary-value equations . in a finite interval 0≤.≤., subject to the . linear boundary conditions ., (1≤.≤.), where . is a .th-order nonlinear differential operator, . is a linear operator, γ. is a constant, respectively. Especially, the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固始县| 临桂县| 商水县| 化德县| 鹤庆县| 绥阳县| 凤城市| 沙坪坝区| 邓州市| 福鼎市| 高青县| 大城县| 枣庄市| 赤壁市| 当雄县| 太康县| 于都县| 崇州市| 皮山县| 马鞍山市| 云安县| 加查县| 专栏| 台东市| 大兴区| 稷山县| 东宁县| 沁阳市| 扶沟县| 石门县| 平果县| 五华县| 西平县| 凤台县| 巢湖市| 双鸭山市| 满洲里市| 樟树市| 涿州市| 教育| 拉萨市|