找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Homotopy Analysis Method in Nonlinear Differential Equations; Shijun Liao Book 2012 Higher Education Press,Beijng and Springer-Verlag GmbH

[復(fù)制鏈接]
樓主: CULT
41#
發(fā)表于 2025-3-28 14:59:41 | 只看該作者
42#
發(fā)表于 2025-3-28 19:12:59 | 只看該作者
43#
發(fā)表于 2025-3-28 23:55:39 | 只看該作者
44#
發(fā)表于 2025-3-29 04:38:36 | 只看該作者
Basic Ideas of the Homotopy Analysis Method the concept of the homotopy, the flexibility of constructing equations for continuous variations, the way to guarantee convergence of solution series, the essence of the convergence-control parameter .., the methods to accelerate convergence, and so on. The corresponding Mathematica codes are given
45#
發(fā)表于 2025-3-29 07:15:58 | 只看該作者
Optimal Homotopy Analysis Method, which logically contains the basic optimal HAM with only one convergence-control parameter and also the optimal HAM with an infinite number of parameters. It is found that approximations given by the optimal HAMs converge fast in general. Especially, the basic optimal HAM mostly gives good enough
46#
發(fā)表于 2025-3-29 12:12:56 | 只看該作者
Systematic Descriptions and Related Theoremshomotopy-derivative operator and deformation equations are proved, which are helpful to gain high-order approximations. Some theorems of convergence are proved, and the methods to control and accelerate convergence are generally described. A few of open questions are discussed.
47#
發(fā)表于 2025-3-29 18:51:36 | 只看該作者
48#
發(fā)表于 2025-3-29 21:50:31 | 只看該作者
49#
發(fā)表于 2025-3-30 00:08:43 | 只看該作者
50#
發(fā)表于 2025-3-30 04:43:36 | 只看該作者
Nonlinear Boundary-value Problems with Multiple Solutionsthematica package BVPh (version 1.0) for .th-order nonlinear boundary-value equations . in a finite interval 0≤.≤., subject to the . linear boundary conditions ., (1≤.≤.), where . is a .th-order nonlinear differential operator, . is a linear operator, γ. is a constant, respectively. Especially, the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 02:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿克苏市| 宾川县| 盐源县| 兴安县| 剑河县| 大新县| 桃源县| 沁水县| 兴山县| 马边| 武汉市| 任丘市| 固原市| 南阳市| 锡林浩特市| 台前县| 宜章县| 泾源县| 汉沽区| 吉安县| 曲麻莱县| 井研县| 浑源县| 康保县| 会昌县| 嘉善县| 阳山县| 长顺县| 富裕县| 五莲县| 敦化市| 公安县| 浦城县| 德化县| 淮安市| 宜阳县| 长沙市| 黄浦区| 望都县| 娄底市| 郴州市|