找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Homogenization of Partial Differential Equations; Vladimir A. Marchenko,Evgueni Ya. Khruslov Book 2006 Birkh?user Boston 2006 Boundary val

[復(fù)制鏈接]
樓主: BRISK
11#
發(fā)表于 2025-3-23 13:37:56 | 只看該作者
degree of instability. At times, it even looked as though it might not stay a?oat. Thankfully, several early boarders remained ?rmly anchored. Other authors were co-opted later, some at relatively short notice, one or two of them under mild duress. We 978-90-481-6974-0978-1-4020-3826-6Series ISSN 0924-5499 Series E-ISSN 2215-0072
12#
發(fā)表于 2025-3-23 15:53:33 | 只看該作者
1544-9998 nhomogeneous media with their corresponding homogenized models are provided. Graduate students, applied mathematicians, physicists, and engineers will benefit from this monograph, which may be used in the class978-0-8176-4468-0Series ISSN 1544-9998 Series E-ISSN 2197-1846
13#
發(fā)表于 2025-3-23 21:22:59 | 只看該作者
Introduction, or close to periodic, structures depending on a single small parameter), in this book we study phenomena in media of arbitrary microstructure characterized by several small parameters (or even more complicated media). For such media, homogenized models of physical processes may have various forms d
14#
發(fā)表于 2025-3-23 22:39:22 | 只看該作者
The Dirichlet Boundary Value Problem in Strongly Perforated Domains with Fine-Grained Boundary,l. Namely, we consider strongly perforated domains (domains with fine-grained boundary) having the following structure: . where Ω is a fixed domain in ?. and . (i=1,2, …s) (“grains”) are disjoint closed sets of decreasing, as .→∞, diameter; see Figure 2.1.
15#
發(fā)表于 2025-3-24 03:06:12 | 只看該作者
16#
發(fā)表于 2025-3-24 09:13:50 | 只看該作者
17#
發(fā)表于 2025-3-24 14:34:28 | 只看該作者
The Neumann Boundary Value Problems in Strongly Perforated Domains,ider domains of three types: strongly connected domains, weakly connected domains, and domains with accumulators (traps). We will introduce quantitative mesoscopic (mean local) characteristics of domains (conductivity tensor and connectedness matrix) and derive characteristics of domains (conductivi
18#
發(fā)表于 2025-3-24 16:44:46 | 只看該作者
19#
發(fā)表于 2025-3-24 19:17:01 | 只看該作者
20#
發(fā)表于 2025-3-25 02:02:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉化市| 南丰县| 定西市| 抚顺市| 文登市| 洛川县| 巴彦县| 永济市| 延川县| 安远县| 嵊泗县| 集贤县| 吴江市| 阿拉善盟| 托克托县| 海盐县| 浮山县| 正宁县| 建德市| 峨眉山市| 博罗县| 平陆县| 水富县| 吴旗县| 柳林县| 泊头市| 吉木乃县| 宾阳县| 上杭县| 改则县| 肇东市| 丽水市| 玉田县| 屏南县| 闽侯县| 锡林浩特市| 榆树市| 临城县| 巢湖市| 武汉市| 阿瓦提县|