找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Holomorphic Functions and Moduli II; Proceedings of a Wor D. Drasin,C. J. Earle,A. Marden Conference proceedings 1988 Springer-Verlag New Y

[復(fù)制鏈接]
樓主: fungus
11#
發(fā)表于 2025-3-23 13:29:01 | 只看該作者
Quasiconformal groups and the conical limit set. For . ≥ 2 we let R. denote euclidean .-space with the standard orthonormal basis ..,...,... its one point compactification equipped with chordal metric.
12#
發(fā)表于 2025-3-23 15:11:17 | 只看該作者
Quasiconformal Actions on Domains in SpaceThe purpose of this paper is to investigate the topological and analytical restrictions on a domain D in euclidean n-space .. on which an infinite discrete quasiconformal group can act. We will see that the restrictions are indeed severe, unlike the case of a discrete group of topological or differentiable homeomorphisms.
13#
發(fā)表于 2025-3-23 21:09:31 | 只看該作者
14#
發(fā)表于 2025-3-24 01:40:07 | 只看該作者
15#
發(fā)表于 2025-3-24 04:32:40 | 只看該作者
https://doi.org/10.1007/978-1-4613-9611-6Riemann surface; convergence; distribution; holomorphic function; operator; quasiconformal mapping
16#
發(fā)表于 2025-3-24 07:37:50 | 只看該作者
17#
發(fā)表于 2025-3-24 10:42:17 | 只看該作者
18#
發(fā)表于 2025-3-24 18:39:53 | 只看該作者
Generic fundamental polyhedra for kleinian groupswith the simplest possible local structure about its edges and vertices. For example, in the study of small deformations as in [.], a fundamental polyhedron for one group is compared to those of nearby groups; if the one polyhedron is as simple as possible, the nearby ones will tend to be as well. I
19#
發(fā)表于 2025-3-24 22:33:43 | 只看該作者
20#
發(fā)表于 2025-3-25 00:04:54 | 只看該作者
The limit set of a discrete group of hyperbolic motionse T orbits accumulate and, as such, is the set of points where T fails to act discontinuously. Over the last several years much work has been done on the classification of limit points—a major impetus in this direction has been provided by the application of ergodic theory to discrete groups. Put si
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-4 23:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙井市| 大同县| 鹤山市| 谢通门县| 宜丰县| 和田市| 海伦市| 讷河市| 宣武区| 山阳县| 泸西县| 纳雍县| 莱芜市| 巴塘县| 息烽县| 广德县| 丰宁| 古田县| 札达县| 临颍县| 玉门市| 本溪市| 吉水县| 无棣县| 四川省| 板桥市| 洞头县| 乐陵市| 兴国县| 德安县| 绥化市| 阜宁县| 七台河市| 寿阳县| 西峡县| 泗洪县| 大同市| 永平县| 浦北县| 泰和县| 尼玛县|