找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Holomorphic Functions and Integral Representations in Several Complex Variables; R. Michael Range Textbook 1986 Springer Science+Business

[復制鏈接]
樓主: TEMPO
11#
發(fā)表于 2025-3-23 11:25:46 | 只看該作者
12#
發(fā)表于 2025-3-23 14:12:14 | 只看該作者
13#
發(fā)表于 2025-3-23 21:30:30 | 只看該作者
14#
發(fā)表于 2025-3-24 00:57:15 | 只看該作者
15#
發(fā)表于 2025-3-24 03:41:47 | 只看該作者
16#
發(fā)表于 2025-3-24 07:54:34 | 只看該作者
,Integral Representations in ?,,In this chapter we develop the basic machinery of integral representations of functions and differential forms in ?. as it relates to the Cauchy-Riemann operator. These representations have their roots in potential theory, the link being the relationship between the complex Laplacian □ and the ordinary Laplacian Δ established in Chapter III, §3.6.
17#
發(fā)表于 2025-3-24 10:43:03 | 只看該作者
,The Levi Problem and the Solution of ?? on Strictly Pseudoconvex Domains,e of its major applications whenever there is a generating form which is . holomorphic in the parameter .. In this chapter we apply these techniques to a strictly pseudoconvex domain .. Here the geometric information is only ., and there is no simple way to find a globally holomorphic generating form.
18#
發(fā)表于 2025-3-24 16:42:37 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/h/image/427950.jpg
19#
發(fā)表于 2025-3-24 21:43:13 | 只看該作者
0072-5285 owed by a thorough discussion of the various fundamental concepts of "complex convexity" related to the remarkable extension properties of holomorphic functions in more than one variable. It then continues with a comprehensive introduction to integral representations, and concludes with complete pro
20#
發(fā)表于 2025-3-25 02:51:29 | 只看該作者
Textbook 1986thorough discussion of the various fundamental concepts of "complex convexity" related to the remarkable extension properties of holomorphic functions in more than one variable. It then continues with a comprehensive introduction to integral representations, and concludes with complete proofs of sub
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
定南县| 太谷县| 靖远县| 青阳县| 建始县| 南宁市| 荆州市| 长沙市| 乐都县| 张家界市| 宿迁市| 越西县| 台州市| 太保市| 宜阳县| 贡觉县| 延庆县| 淄博市| 永昌县| 荔波县| 新密市| 大冶市| 墨脱县| 河西区| 文水县| 西乌珠穆沁旗| 宣威市| 张家界市| 蒙山县| 凤山县| 会宁县| 中宁县| 达尔| 乐东| 斗六市| 九龙县| 英山县| 民县| 塔河县| 陵川县| 耿马|