找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Holomorphic Foliations with Singularities; Key Concepts and Mod Bruno Scárdua Textbook 2021 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
樓主: coherent
21#
發(fā)表于 2025-3-25 07:09:33 | 只看該作者
22#
發(fā)表于 2025-3-25 09:02:02 | 只看該作者
The Classical Notions of Foliations,This chapter is intended to introduce the classical notions of foliation in the real framework. There- fore, smooth foliations are introduced as well as the correlate main concept of holonomy. The reader which is already familiar with these notions may skip to the next chapter.
23#
發(fā)表于 2025-3-25 12:46:12 | 只看該作者
24#
發(fā)表于 2025-3-25 19:23:31 | 只看該作者
Holomorphic Foliations: Non-singular Case,In this chapter we introduce and discuss the concept of holomorphic foliation in the non-singular case. Basic constructions and examples are presented and we also motivate the forthcoming notion of holomorphic foliation with singularities.
25#
發(fā)表于 2025-3-25 21:52:53 | 只看該作者
Holomorphic Foliations with Singularities,In this chapter we introduce the concept of holomorphic foliation with singularities, focusing on the two cases: dimension one and codimension one.
26#
發(fā)表于 2025-3-26 01:40:18 | 只看該作者
27#
發(fā)表于 2025-3-26 05:10:20 | 只看該作者
Foliations with Algebraic Limit Sets,In this chapter we introduce and study the notion of limit set of a holomorphic foliation with singularities. We focus on the case of foliations on the complex projective plane having a limit set which is assumed to be algebraic of dimension one.
28#
發(fā)表于 2025-3-26 10:57:55 | 只看該作者
Some Modern Questions,This chapter is devoted to some more recent developments and problems in the theory of holomorphic foliations with singularities. We present a non-exhaustive list of subjects of current interest and some results that were recently obtained.
29#
發(fā)表于 2025-3-26 15:05:34 | 只看該作者
30#
發(fā)表于 2025-3-26 19:28:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
孟津县| 郧西县| 峨边| 府谷县| 民丰县| 霍州市| 习水县| 临武县| 双城市| 大厂| 哈巴河县| 莱西市| 天等县| 绥阳县| 盐山县| 石阡县| 龙游县| 沂南县| 宜君县| 花莲市| 兴和县| 昭觉县| 吴川市| 高尔夫| 渝中区| 清镇市| 山阳县| 甘洛县| 石屏县| 东至县| 彝良县| 综艺| 象山县| 乌鲁木齐市| 商都县| 金平| 巨野县| 玛曲县| 崇左市| 井研县| 石楼县|