找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Holographic Entanglement Entropy; Mukund Rangamani,Tadashi Takayanagi Book 2017 Springer International Publishing AG 2017 AdS/CFT Correspo

[復(fù)制鏈接]
樓主: HEM
41#
發(fā)表于 2025-3-28 18:17:04 | 只看該作者
42#
發(fā)表于 2025-3-28 20:07:31 | 只看該作者
Properties of Holographic Entanglement Entropyata. Subleading corrections require ascertaining the bulk entanglement, as discussed in the previous section. All in all, this leads to some unexpected features, which at first sight seem unconventional, but are easily understood once one fully appreciates the implications of the limit ..???1 being effectively a semiclassical regime of the QFT.
43#
發(fā)表于 2025-3-29 01:47:37 | 只看該作者
44#
發(fā)表于 2025-3-29 06:11:53 | 只看該作者
Entanglement and Renormalization at the scales of interest. Clearly, this procedure involves some loss of information owing to the coarse-graining—a natural question is how does one capture a useful measure of the number of degrees of freedom at each length scale?
45#
發(fā)表于 2025-3-29 11:16:06 | 只看該作者
Holographic Entanglement Entropyese are rather complex quantities which required us to work with QFTs on singular branched cover manifolds. Apart from the case of CFT. discussed in §3, where the power of conformal invariance can be used to simplify the problem, this is a rather formidable task for interacting QFTs, in general.
46#
發(fā)表于 2025-3-29 13:09:25 | 只看該作者
Entanglement at Large Central Chargeription to compute the physical observables. A general question one might ask is what are the necessary and sufficient conditions for holography to work? Could we recover universal results in a class of field theories that are well approximated by holographic computations?
47#
發(fā)表于 2025-3-29 16:09:26 | 只看該作者
48#
發(fā)表于 2025-3-29 22:15:07 | 只看該作者
49#
發(fā)表于 2025-3-30 01:25:07 | 只看該作者
Lecture Notes in Physicshttp://image.papertrans.cn/h/image/427930.jpg
50#
發(fā)表于 2025-3-30 05:07:48 | 只看該作者
978-3-319-52571-6Springer International Publishing AG 2017
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
津南区| 连平县| 蓬溪县| 三门峡市| 三亚市| 通州区| 霍城县| 三穗县| 永福县| 晴隆县| 大足县| 视频| 武定县| 馆陶县| 息烽县| 廉江市| 顺平县| 临汾市| 萨迦县| 遂溪县| 太谷县| 茂名市| 德钦县| 佛教| 惠东县| 札达县| 湘阴县| 宜宾县| 葫芦岛市| 陇南市| 卓资县| 万盛区| 彰化县| 五河县| 五寨县| 湖南省| 喀什市| 响水县| 常宁市| 阳西县| 罗甸县|