找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Higher Education, Globalization and Eduscapes; Towards a Critical A Per-Anders Forstorp,Ulf Mellstr?m Book 2018 The Editor(s) (if applicabl

[復(fù)制鏈接]
樓主: 出租
11#
發(fā)表于 2025-3-23 11:16:17 | 只看該作者
ated L-functions. A very precise conjecture has been formulated for elliptic curves by Birc~ and Swinnerton-Dyer and generalized to abelian varieties by Tate. The numerical evidence is quite encouraging. A weakened form of the conjectures has been verified for CM elliptic curves by Coates and Wiles,
12#
發(fā)表于 2025-3-23 15:23:51 | 只看該作者
13#
發(fā)表于 2025-3-23 19:54:24 | 只看該作者
Per-Anders Forstorp,Ulf Mellstr?m (.(.)). together with an additional function .∞ (which will take care of the size constraints), for which we assume the following bound:. for some parameters ., ., . and (.).. The Bombieri-Vinogradov Theorem falls within this framework with .∞ being the characteristic function of real numbers ≤ . a
14#
發(fā)表于 2025-3-24 02:03:55 | 只看該作者
Per-Anders Forstorp,Ulf Mellstr?msinstitut fUr Mathematik of the Swiss Federal Institute of Technology, Zurich, at the invitation of Professor Beno Eckmann. My Introduction to Analytic Number Theory has appeared in the meanwhile, and this book may be looked upon as a sequel. It presupposes only a modicum of acquaintance with analys
15#
發(fā)表于 2025-3-24 03:08:23 | 只看該作者
Per-Anders Forstorp,Ulf Mellstr?msinstitut fUr Mathematik of the Swiss Federal Institute of Technology, Zurich, at the invitation of Professor Beno Eckmann. My Introduction to Analytic Number Theory has appeared in the meanwhile, and this book may be looked upon as a sequel. It presupposes only a modicum of acquaintance with analys
16#
發(fā)表于 2025-3-24 08:40:48 | 只看該作者
Per-Anders Forstorp,Ulf Mellstr?msinstitut fUr Mathematik of the Swiss Federal Institute of Technology, Zurich, at the invitation of Professor Beno Eckmann. My Introduction to Analytic Number Theory has appeared in the meanwhile, and this book may be looked upon as a sequel. It presupposes only a modicum of acquaintance with analys
17#
發(fā)表于 2025-3-24 14:16:50 | 只看該作者
Per-Anders Forstorp,Ulf Mellstr?ms and the p-adic numbers. The p-adic numbers contain the p-adic integers Z.p. which are the inverse limit of the finite rings Z/p.n.. This gives rise to a tree, and probability measures w on Z.p. correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilb
18#
發(fā)表于 2025-3-24 15:54:06 | 只看該作者
Per-Anders Forstorp,Ulf Mellstr?ms and the p-adic numbers. The p-adic numbers contain the p-adic integers Z.p. which are the inverse limit of the finite rings Z/p.n.. This gives rise to a tree, and probability measures w on Z.p. correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilb
19#
發(fā)表于 2025-3-24 21:23:52 | 只看該作者
Per-Anders Forstorp,Ulf Mellstr?ms and the p-adic numbers. The p-adic numbers contain the p-adic integers Z.p. which are the inverse limit of the finite rings Z/p.n.. This gives rise to a tree, and probability measures w on Z.p. correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilb
20#
發(fā)表于 2025-3-25 02:32:55 | 只看該作者
Per-Anders Forstorp,Ulf Mellstr?ms contain the p-adic integers Z.p. which are the inverse limit of the finite rings Z/p.n.. This gives rise to a tree, and probability measures w on Z.p. correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilbert space L.2.(Z.p.,w). The real analogue o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北碚区| 黔南| 洛南县| 合川市| 长汀县| 岚皋县| 元谋县| 涟源市| 海晏县| 济南市| 桑植县| 无锡市| 昌吉市| 光泽县| 温泉县| 石城县| 巴马| 扬中市| 兴义市| 青冈县| 大英县| 芜湖县| 仁寿县| 涞水县| 泽普县| 宝应县| 古蔺县| 枣强县| 玉环县| 九江市| 靖安县| 昌都县| 梓潼县| 敖汉旗| 德清县| 安义县| 安康市| 仁寿县| 太白县| 邯郸市| 海林市|