找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: High-Impact Weather Events over the SAARC Region; Kamaljit Ray,M. Mohapatra,L.S. Rathore Book 2015 Capital Publishing Company 2015 Extreme

[復(fù)制鏈接]
樓主: CHARY
31#
發(fā)表于 2025-3-27 00:50:00 | 只看該作者
d edited contributions from international experts in approxi.These proceedings were prepared in connection with the international conference Approximation Theory XIII, which was held March 7–10, 2010 in San Antonio, Texas. The conference was the thirteenth in a series of meetings in Approximation Th
32#
發(fā)表于 2025-3-27 02:40:51 | 只看該作者
Pulak Guhathakurtad edited contributions from international experts in approxi.These proceedings were prepared in connection with the international conference Approximation Theory XIII, which was held March 7–10, 2010 in San Antonio, Texas. The conference was the thirteenth in a series of meetings in Approximation Th
33#
發(fā)表于 2025-3-27 07:35:11 | 只看該作者
34#
發(fā)表于 2025-3-27 12:43:49 | 只看該作者
Abdul Mannan,Mahbub Alamd edited contributions from international experts in approxi.These proceedings were prepared in connection with the international conference Approximation Theory XIII, which was held March 7–10, 2010 in San Antonio, Texas. The conference was the thirteenth in a series of meetings in Approximation Th
35#
發(fā)表于 2025-3-27 15:45:10 | 只看該作者
36#
發(fā)表于 2025-3-27 21:17:11 | 只看該作者
37#
發(fā)表于 2025-3-28 00:41:07 | 只看該作者
38#
發(fā)表于 2025-3-28 05:23:09 | 只看該作者
Nazlee Ferdousi,Sujit K. Debsarma,Abdul Mannan,Majajul Alam Sarkerrs of stochastic type, convolution type, wavelet type integral opera- tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat- ics such a
39#
發(fā)表于 2025-3-28 09:33:05 | 只看該作者
A. Chevuturi,A. P. Dimriso operators of stochastic type, convolution type, wavelet type integral opera- tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat- ics such a978-1-4612-7112-3978-1-4612-1360-4
40#
發(fā)表于 2025-3-28 13:11:43 | 只看該作者
Mohan K. Das,Someshwar Das,Mizanur Rahmanrs of stochastic type, convolution type, wavelet type integral opera- tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat- ics such a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵山县| 崇左市| 怀化市| 余姚市| 阿瓦提县| 行唐县| 临海市| 新密市| 盐池县| 乐东| 汶川县| 赤峰市| 玛纳斯县| 太谷县| 赤水市| 定安县| 连南| 澎湖县| 齐河县| 徐州市| 玉树县| 全州县| 榆社县| 兴安县| 治县。| 灯塔市| 益阳市| 镇康县| 无为县| 兴海县| 临夏县| 罗源县| 木兰县| 肇庆市| 循化| 平罗县| 中宁县| 娄烦县| 南昌县| 东海县| 郯城县|